2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 численное решение системы нелинейных уравнений
Сообщение01.08.2012, 11:01 
Надеюсь правильно сформулировал название темы.
по мотивам следущих тем(оказалось, что нужно решить не матричное уравнение, но смысл тот же)
topic61117.html

необходимо решить систему уравнений
(в форме "операторов" (не уверен в строгой математической записи, но в целом должно быть понятно))
$M[Rot[(x,y)]]=L[M[(x,y)]]$
где каждый "оператор" (L,M,Rot)представляет собой перспективное искажение
по формуле(если быть точным то для Rot формула проще $m_{31}=0,m_{32}=0,m_{33}=1$ и вообще для всех справедливо $m_{33}=1$)
Изображение
попробовал решить задачу в пакете математика, причём подставляя численные значение
$a_{i,j}$, $b_{i,j}$, математика долго думает и не видно ни конца не края, хотелось бы хотя бы понять правильно ли я всё делаю или всё просто зависло.
в коде $a_{i,j}$ для матрицы Rot, $b_{i,j}$ для матрицы L
параметры $b_{i,j}$ были определены для задачи примерно, т.е. есть некоторая погрешность, не знаю как это может повлиять на решение.
получаю 8 уравнений 8 неизвестных для 4 точек(точки могут быть любыми или лучше всё таки взять некоторые определенные\более простые?)
код для математики:
(в коде $a_{i,j}$ для матрицы Rot, $b_{i,j}$ для матрицы L)
Цитата:
Solve[(b13+(b11 (m13+m11 x1+m12 y1))/(m33+m31 x1+m32 y1)+(b12 (m23+m21 x1+m22 y1))/(m33+m31 x1+m32 y1))/(b33+(b31 (m13+m11 x1+m12 y1))/(m33+m31 x1+m32 y1)+(b32 (m23+m21 x1+m22 y1))/(m33+m31 x1+m32 y1))==
(m13+(m11 (a13+a11 x1+a12 y1))/(a33+a31 x1+a32 y1)+(m12 (a23+a21 x1+a22 y1))/(a33+a31 x1+a32 y1))/(m33+(m31 (a13+a11 x1+a12 y1))/(a33+a31 x1+a32 y1)+(m32 (a23+a21 x1+a22 y1))/(a33+a31 x1+a32 y1))&&
(b23+(b21 (m13+m11 x1+m12 y1))/(m33+m31 x1+m32 y1)+(b22 (m23+m21 x1+m22 y1))/(m33+m31 x1+m32 y1))/(b33+(b31 (m13+m11 x1+m12 y1))/(m33+m31 x1+m32 y1)+(b32 (m23+m21 x1+m22 y1))/(m33+m31 x1+m32 y1))==
(m23+(m21 (a13+a11 x1+a12 y1))/(a33+a31 x1+a32 y1)+(m22 (a23+a21 x1+a22 y1))/(a33+a31 x1+a32 y1))/(m33+(m31 (a13+a11 x1+a12 y1))/(a33+a31 x1+a32 y1)+(m32 (a23+a21 x1+a22 y1))/(a33+a31 x1+a32 y1))&&
(b13+(b11 (m13+m11 x2+m12 y2))/(m33+m31 x2+m32 y2)+(b12 (m23+m21 x2+m22 y2))/(m33+m31 x2+m32 y2))/(b33+(b31 (m13+m11 x2+m12 y2))/(m33+m31 x2+m32 y2)+(b32 (m23+m21 x2+m22 y2))/(m33+m31 x2+m32 y2))==
(m13+(m11 (a13+a11 x2+a12 y2))/(a33+a31 x2+a32 y2)+(m12 (a23+a21 x2+a22 y2))/(a33+a31 x2+a32 y2))/(m33+(m31 (a13+a11 x2+a12 y2))/(a33+a31 x2+a32 y2)+(m32 (a23+a21 x2+a22 y2))/(a33+a31 x2+a32 y2))&&
(b23+(b21 (m13+m11 x2+m12 y2))/(m33+m31 x2+m32 y2)+(b22 (m23+m21 x2+m22 y2))/(m33+m31 x2+m32 y2))/(b33+(b31 (m13+m11 x2+m12 y2))/(m33+m31 x2+m32 y2)+(b32 (m23+m21 x2+m22 y2))/(m33+m31 x2+m32 y2))==
(m23+(m21 (a13+a11 x2+a12 y2))/(a33+a31 x2+a32 y2)+(m22 (a23+a21 x2+a22 y2))/(a33+a31 x2+a32 y2))/(m33+(m31 (a13+a11 x2+a12 y2))/(a33+a31 x2+a32 y2)+(m32 (a23+a21 x2+a22 y2))/(a33+a31 x2+a32 y2))&&
(b13+(b11 (m13+m11 x3+m12 y3))/(m33+m31 x3+m32 y3)+(b12 (m23+m21 x3+m22 y3))/(m33+m31 x3+m32 y3))/(b33+(b31 (m13+m11 x3+m12 y3))/(m33+m31 x3+m32 y3)+(b32 (m23+m21 x3+m22 y3))/(m33+m31 x3+m32 y3))==
(m13+(m11 (a13+a11 x3+a12 y3))/(a33+a31 x3+a32 y3)+(m12 (a23+a21 x3+a22 y3))/(a33+a31 x3+a32 y3))/(m33+(m31 (a13+a11 x3+a12 y3))/(a33+a31 x3+a32 y3)+(m32 (a23+a21 x3+a22 y3))/(a33+a31 x3+a32 y3))&&
(b23+(b21 (m13+m11 x3+m12 y3))/(m33+m31 x3+m32 y3)+(b22 (m23+m21 x3+m22 y3))/(m33+m31 x3+m32 y3))/(b33+(b31 (m13+m11 x3+m12 y3))/(m33+m31 x3+m32 y3)+(b32 (m23+m21 x3+m22 y3))/(m33+m31 x3+m32 y3))==
(m23+(m21 (a13+a11 x3+a12 y3))/(a33+a31 x3+a32 y3)+(m22 (a23+a21 x3+a22 y3))/(a33+a31 x3+a32 y3))/(m33+(m31 (a13+a11 x3+a12 y3))/(a33+a31 x3+a32 y3)+(m32 (a23+a21 x3+a22 y3))/(a33+a31 x3+a32 y3))&&
(b13+(b11 (m13+m11 x4+m12 y4))/(m33+m31 x4+m32 y4)+(b12 (m23+m21 x4+m22 y4))/(m33+m31 x4+m32 y4))/(b33+(b31 (m13+m11 x4+m12 y4))/(m33+m31 x4+m32 y4)+(b32 (m23+m21 x4+m22 y4))/(m33+m31 x4+m32 y4))==
(m13+(m11 (a13+a11 x4+a12 y4))/(a33+a31 x4+a32 y4)+(m12 (a23+a21 x4+a22 y4))/(a33+a31 x4+a32 y4))/(m33+(m31 (a13+a11 x4+a12 y4))/(a33+a31 x4+a32 y4)+(m32 (a23+a21 x4+a22 y4))/(a33+a31 x4+a32 y4))&&
(b23+(b21 (m13+m11 x4+m12 y4))/(m33+m31 x4+m32 y4)+(b22 (m23+m21 x4+m22 y4))/(m33+m31 x4+m32 y4))/(b33+(b31 (m13+m11 x4+m12 y4))/(m33+m31 x4+m32 y4)+(b32 (m23+m21 x4+m22 y4))/(m33+m31 x4+m32 y4))==
(m23+(m21 (a13+a11 x4+a12 y4))/(a33+a31 x4+a32 y4)+(m22 (a23+a21 x4+a22 y4))/(a33+a31 x4+a32 y4))/(m33+(m31 (a13+a11 x4+a12 y4))/(a33+a31 x4+a32 y4)+(m32 (a23+a21 x4+a22 y4))/(a33+a31 x4+a32 y4))&&m33==1,{m11,m12,m13,m21,m22,m23,m31,m32}]



собственно вопрос как можно решить, хотелось бы услышать названия методов и как эт оможно потом вставить в код на с++.

 
 
 [ 1 сообщение ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group