Помогите понять вырожденный случай.
С невырожденным случаем все понятно.
Пусть дана выборка случайных величин i.i.d. (закон распределения нормальный)
![$
\[X = \left\{ {{x_1}...{x_n}} \right\}\]$ $
\[X = \left\{ {{x_1}...{x_n}} \right\}\]$](https://dxdy-02.korotkov.co.uk/f/5/7/c/57cc8275198c3c4cf7faa3d82d6dce5582.png)
тогда для него считаем функцию правдоподобия
![$% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac
% H8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFf
% ea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaa
% baqaciGacaGaaeqabaWaaeaaeaaakabbaaaaaaaaxxo8TVF6a8qaba
% GaamitaiaacIcacqaH4oqCcaGGPaGaeyypa0JaamiCaiaacIcacaWG
% ybGaaiiFaiabeI7aXjaacMcaaaa!43A9!
\[L(\theta ) = p(X|\theta )\]$ $% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac
% H8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFf
% ea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaa
% baqaciGacaGaaeqabaWaaeaaeaaakabbaaaaaaaaxxo8TVF6a8qaba
% GaamitaiaacIcacqaH4oqCcaGGPaGaeyypa0JaamiCaiaacIcacaWG
% ybGaaiiFaiabeI7aXjaacMcaaaa!43A9!
\[L(\theta ) = p(X|\theta )\]$](https://dxdy-04.korotkov.co.uk/f/b/6/f/b6fde9bc0b0d7f15a0b3c98bee1d999482.png)
![$% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac
% H8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFf
% ea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaa
% baqaciGacaGaaeqabaWaaeaaeaaakabbaaaaaaaaxxo8TVF6a8qaba
% GaamitaiaacIcacqaH4oqCcaGGPaGaeyypa0JaamiCaiaacIcacaWG
% ybGaaiiFaiabeI7aXjaacMcacqGH9aqpdaqeWbqaaiaadchacaGGOa
% GaamiEamaaBaaaleaacaWGUbaabeaakiaacYhacqaH4oqCcaGGPaaa
% leaacaWGUbGaeyypa0JaaGymaaqaaiaad6eaa0Gaey4dIunaaaa!5191!
\[L(\theta ) = p(X|\theta ) = \prod\limits_{n = 1}^N {p({x_n}|\theta )} \]$ $% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac
% H8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFf
% ea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaa
% baqaciGacaGaaeqabaWaaeaaeaaakabbaaaaaaaaxxo8TVF6a8qaba
% GaamitaiaacIcacqaH4oqCcaGGPaGaeyypa0JaamiCaiaacIcacaWG
% ybGaaiiFaiabeI7aXjaacMcacqGH9aqpdaqeWbqaaiaadchacaGGOa
% GaamiEamaaBaaaleaacaWGUbaabeaakiaacYhacqaH4oqCcaGGPaaa
% leaacaWGUbGaeyypa0JaaGymaaqaaiaad6eaa0Gaey4dIunaaaa!5191!
\[L(\theta ) = p(X|\theta ) = \prod\limits_{n = 1}^N {p({x_n}|\theta )} \]$](https://dxdy-02.korotkov.co.uk/f/d/a/1/da1dad7b68c0870f60afb0dd99855b7582.png)
потом логарифмируем, и находим частную производную и находим приравниваем ее к нулю и
![$% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac
% H8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFf
% ea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaa
% baqaciGacaGaaeqabaWaaeaaeaaakabbaaaaaaaaxxo8TVF6a8qaea
% qabeaaciGGSbGaai4BaiaacEgacaWGmbGaaiikaiabeI7aXjaacMca
% cqGH9aqpciGGSbGaai4BaiaacEgacaWGWbGaaiikaiaadIfacaGG8b
% GaeqiUdeNaaiykaiabg2da9maaqahabaaaleaacaWGUbGaeyypa0Ja
% aGymaaqaaiaad6eaa0GaeyyeIuoakiGacYgacaGGVbGaai4zaiaadc
% hacaGGOaGaamiEamaaBaaaleaacaWGUbaabeaakiaacYhacqaH8oqB
% caGGSaGaeq4WdmNaaiykaaqaaiabeY7aTjaacYcacaaMf8Uaamioei
% aaywW7cqaHdpWCaaaa!649C!
\[\begin{array}{l}
\log L(\theta ) = \log p(X|\theta ) = \sum\limits_{n = 1}^N {} \log p({x_n}|\mu ,\sigma )
\end{array}\]$ $% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac
% H8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFf
% ea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaa
% baqaciGacaGaaeqabaWaaeaaeaaakabbaaaaaaaaxxo8TVF6a8qaea
% qabeaaciGGSbGaai4BaiaacEgacaWGmbGaaiikaiabeI7aXjaacMca
% cqGH9aqpciGGSbGaai4BaiaacEgacaWGWbGaaiikaiaadIfacaGG8b
% GaeqiUdeNaaiykaiabg2da9maaqahabaaaleaacaWGUbGaeyypa0Ja
% aGymaaqaaiaad6eaa0GaeyyeIuoakiGacYgacaGGVbGaai4zaiaadc
% hacaGGOaGaamiEamaaBaaaleaacaWGUbaabeaakiaacYhacqaH8oqB
% caGGSaGaeq4WdmNaaiykaaqaaiabeY7aTjaacYcacaaMf8Uaamioei
% aaywW7cqaHdpWCaaaa!649C!
\[\begin{array}{l}
\log L(\theta ) = \log p(X|\theta ) = \sum\limits_{n = 1}^N {} \log p({x_n}|\mu ,\sigma )
\end{array}\]$](https://dxdy-04.korotkov.co.uk/f/3/3/6/336e0218f59cde75dfd0ab8e0a4b5d6b82.png)
находим
значения
![$% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac
% H8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFf
% ea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaa
% baqaciGacaGaaeqabaWaaeaaeaaakabbaaaaaaaaxxo8TVF6a8qaba
% GaeqiVd0Maaiilaiabeo8aZbaa!3D0B!
\[\mu ,\sigma \]$ $% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac
% H8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFf
% ea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaa
% baqaciGacaGaaeqabaWaaeaaeaaakabbaaaaaaaaxxo8TVF6a8qaba
% GaeqiVd0Maaiilaiabeo8aZbaa!3D0B!
\[\mu ,\sigma \]$](https://dxdy-04.korotkov.co.uk/f/b/e/b/beb9c2b9a6956e8f5df4b97f288fb68782.png)
Как быть в вырожденном случае, то есть если
![$% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac
% H8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFf
% ea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaa
% baqaciGacaGaaeqabaWaaeaaeaaakabbaaaaaaaaxxo8TVF6a8qaba
% Gaamiwaiabg2da9maacmaabaGaamiEamaaBaaaleaacaaIXaaabeaa
% aOGaay5Eaiaaw2haaaaa!3EE4!
\[X = \left\{ {{x_1}} \right\}\]$ $% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfgBPj
% MCPbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac
% H8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFf
% ea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaa
% baqaciGacaGaaeqabaWaaeaaeaaakabbaaaaaaaaxxo8TVF6a8qaba
% Gaamiwaiabg2da9maacmaabaGaamiEamaaBaaaleaacaaIXaaabeaa
% aOGaay5Eaiaaw2haaaaa!3EE4!
\[X = \left\{ {{x_1}} \right\}\]$](https://dxdy-01.korotkov.co.uk/f/c/e/6/ce6033dde3152860b92e243abf723cd482.png)
???