Здравствуйте.
Товарищи, помогите пожалуйста разобраться, как можно реализовать вот такую задачу в системе Mathematica
Основная сложность заключается в том, что я слабо представляю, как можно здесь работать с 
и как можно построить систему, из заданного нам равенства...
Код:
CoeffMat[a0_, b0_, \[Alpha]0_, \[Beta]0_, n_] :=
 Module[{a = a0, b = b0, \[Alpha] = \[Alpha]0, \[Beta] = \[Beta]0, h, 
   j},
  h = (b - a)/n; 
  Vx = Table[ a + h j, {j, n - 1} ]; 
  Va = Vc = Table[ 0, {n - 2} ]; 
  Vd = Vb = Table[ 0, {n - 1} ]; 
  
  For[ j = 1, j <= n - 1, j++,
   Vd[[j]] = 2 + h^2 q[Vx[[j]]]; 
   Vb[[j]] = - h^2 r[Vx[[j]]];  ]; 
  
  Vb[[1]] = Vb[[1]] + (1 + 1/2 h p[Vx[[1]]]) \[Alpha]; 
  Vb[[n - 1]] = Vb[[n - 1]] + (1 - 1/2 h p[Vx[[n - 1]]]) \[Beta]; 
  
  
  For[ j = 1, j <= n - 2, j++,
   Va[[j]] = -1 - 1/2 h p[Vx[[j + 1]]];
   Vc[[j]] = -1 + 1/2 h p[Vx[[j]]];  ];  ]  
(************************************************************)
TriMat[va_, vd_, vc_, vb_, n_] :=
 Module[{a = va, b = vb, c = vc, d = vd, k, u}, 
  u = Table[0, {n - 1}]; 
  
  For[ k = 2, k <= n - 1, k++, 
   d[[k]] = d[[k]] -  a[[k - 1]]/d[[k - 1]]  c[[k - 1]]; 
   b[[k]] = b[[k]] -  a[[k - 1]]/d[[k - 1]]  b[[k - 1]]; ]; 
  u[[n - 1]] = b[[n - 1]]/d[[n - 1]]; 
  
  For[ k = n - 2, 1 <= k, k--,
   u[[k]] = (b[[k]] - c[[k]] u[[k + 1]])/d[[k]] ]; 
  Return[u]; ]  
(*************************************************************)
FineDDE[a0_, b0_, \[Alpha]0_, \[Beta]0_, n_] :=
 Module[{a = a0, b = b0, \[Alpha] = \[Alpha]0, \[Beta] = \[Beta]0, i},
  CoeffMat[a, b, \[Alpha], \[Beta], n]; 
  Xt = TriMat[Va, Vd, Vc, Vb, n]; 
  pts = Transpose[{Vx, Xt}];  
  pts = Append[pts, {b, \[Beta]}];  
  pts = Prepend[pts, {a, \[Alpha]}];  
  Return[pts]; ]  
(****************************************************************)
(****************************************************************)
(****************************************************************)
p[x_] = -1/x;
q[x_] = 1 + 1/x;
r[x_] = (2/x)*Exp[x];
a = 1.0;
b = Exp[1];
\[Alpha] = 0;
\[Beta] = Exp[Exp[1]];
Print["Vamos solucar o D.E.:"]
Print["-u'' + (", p[x], ")u' +(", q[x], ")u = ", -r[x]];
Print["com u(", a, ") = \[Alpha] = ", \[Alpha]];
Print["e u(", b, ") = \[Beta] = ", \[Beta]];
Print["e intevalo x em [", a, ",", b, "]"];
(*********************************************************************)
CoeffMat[1.0, Exp[1], 0.0, Exp[Exp[1]], 50]
Print["\n", "Vx = ", Vx];
Print["\n", "Va = ", Va];
Print["\n", "Vc = ", Vc];
Print["\n", "Vd = ", Vd];
Print["\n", "Vb = ", Vb];
Xt = TriMat[Va, Vd, Vc, Vb, 50];
Print["\n", "Vx = ", Vx];
Print["\n", "Xt = ", Xt];
wi = Xt;
wi = Append[wi, 0];
wi = Prepend[wi, 1];
pts = Transpose[{Vx, Xt}];
Print["\n", "pontos = ", pts];
pts = Append[pts, {1, 0}];
Print["\n", "pontos com boundory direita: ", pts];
pts = Prepend[pts, {0, 1}];
Print["\n", "pontos com boundorry esqueda : ", pts];
pontos4 = FineDDE[1.0, Exp[1], 0.0, Exp[Exp[1]], 50];
 
Print[""]
Print["Grafico de pontos calculados de metodo das diferenças finitas:"]
Print[ListLinePlot[pontos4, PlotRange -> {{-5, 5.1}, {-5, 5.1}}, 
  AxesLabel -> {"x", "u"}]]
Print["grafico de função exacta -u'' -(1/x) * u = -(2/x) e^{x}:"]
(*Print[Plot[(1-x)*Exp[x],{x,0,1}]]*)
Print["u(", a, ") = ", \[Alpha]];
Print["u(", b, ") = ", \[Beta]];