2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Вопросы (задачи) по теории вер-тей и Мат. Статистике
Сообщение23.01.2007, 20:22 
Есть задача, и решение: что не правельно?
Задача:
В нашем распоряжении 3 лампочки, каждая из которых с вероятностью 0,4 имеет дефект. При включении дефективная лампа сразу перегорает, после чего меняется на другую. Построить ряд распределения и функцию распределения случайной величины Х - числа лампочек, которое будит испытанно. Найти её мат. ожидания и дисперсию.
Решение:
$P_{0,3}=C_3^0p^0q^3=\frac{3!}{0!3!}0.4^0\cdot 0.6^3=0.126$
$P_{1,3}=C_3^1p^1q^2=\frac{3!}{1!2!}0.4\cdot 0.6^2=0.432$
$P_{2,3}=C_3^2p^2q^1=\frac{3!}{2!1!}0.4^2\cdot 0.6=0.288$
$P_{3,3}=C_3^3p^3q^0=\frac{3!}{3!0!}0.4^3\cdot 0.6^0=0.064$
$$ \left|\begin{array}{cсссc} X&0&1&2&3 \\ P&{0.126}&{0.432}&{0.288}&{0.064} \end{array} \right|$$
$M(x)=\sum\limits_{i=0}^n P_i X_i$ или $M(x)=p\cdot n$
$M(x)=1.2$
$D(x)=p\cdot n\cdot q=0.72$

 
 
 
 
Сообщение23.01.2007, 21:43 
Аватара пользователя
Нет. Вы здесь нашли распределение другой случайной величины - количества дефектных лампочек среди трёх имеющихся. А вопрос сформулирован совсем иначе.

 
 
 
 
Сообщение23.01.2007, 22:38 
Цитата:
Построить ряд распределения случайной величины Х - числа лампочек, которое будит испытанно.

Т.е. если:
при $X=1$ будит стоять вероятность $P_1$ того, что лампочка без дифекта: $P_1=0.6$
при $X=2$ - вероятность $P_2$ того, что первая лампочка с дифектом, вторая без: $P_2=0.4\cdot 0.6=0.24$
при $X=3$ - вероятность $P_3$ того, что первая лампочка с дифектом, вторая с дифектом, третья без: $P_3=0.4\cdot 0.4\cdot 0.6=0.096$ - или тут не важно дифективность третий лампы, ведь она будит испытана в любом случаии если первые две дифективны ($P_3=0.4\cdot 0.4=0.16$)?
Скорее всего $P_3=0.16$, так как, тогда $\sum\limits_{i=1}^3 P_i=0.6+0.24+0.16=1$, верно?
И тогда:
$$ \left|\begin{array}{cсс} X&1&2&3 \\ P&{0.6}&{0.24}&{0.16} \end{array} \right|$$
$M(x)=\sum\limits_{i=0}^n P_i X_i=1\cdot 0.6+2\cdot 0.24+3\cdot0.16=1.56$$
$M(x^2)=\sum\limits_{i=0}^n P_i X_i^2=1^2\cdot 0.6+2^2\cdot 0.24+3^2\cdot0.16=3$$
$D(x)=M(x^2)-[M(x)]^2=3-2.433=0.5664$$

Теперь верно?

 
 
 
 
Сообщение23.01.2007, 23:43 
Аватара пользователя
Марк писал(а):
Теперь верно?


Верно.

 
 
 
 
Сообщение24.01.2007, 00:58 
Someone писал(а):
Верно.

Спасибо.

Еще вопрос. Есть статистическое распределение выборки:
$$ \left|\begin{array}{cсссcсс} {(x, x)}&{(-5, -1)}&{(-1, 3)}&{(3, 7)}&{(7, 11)}&{(11, 15)}&{(15, 19)} \\ n&8&{12}&{32}&{28}&{16}&{8} \end{array} \right|$$
Надо найти: Выборочное средние и Выборочную дисперсию.
Для нахождения выборочного среднего преподаватель дал нам формулу:
$$\bar x=\frac {\sum\limits_{j;i=1}^k x_j\cdot n_i}{\sum\limits_{i=1}^k n_i}$$ и определение к ней: Выборочная средняя является несмещенной и состоятельной оценкой мат. ожидания.
НО, в других источниках я нешел только везде одну формулу: $$\bar x=\frac {\sum\limits_{i=1}^k x_i}{n}$$ и определение: среднее арифметическое наблюдений.

Так где же правда?

С дисперсией думаю более ясно: $D_B=\bar {x^2}-(\bar x)^2$

 
 
 
 
Сообщение24.01.2007, 03:37 
Аватара пользователя
Марк писал(а):
Еще вопрос. Есть статистическое распределение выборки:
$$ \left|\begin{array}{cсссcсс} {(x, x)}&{(-5, -1)}&{(-1, 3)}&{(3, 7)}&{(7, 11)}&{(11, 15)}&{(15, 19)} \\ n&8&{12}&{32}&{28}&{16}&{8} \end{array} \right|$$
Надо найти: Выборочное средние и Выборочную дисперсию.
Для нахождения выборочного среднего преподаватель дал нам формулу:
$$\bar x=\frac {\sum\limits_{j;i=1}^k x_j\cdot n_i}{\sum\limits_{i=1}^k n_i}$$ и определение к ней: Выборочная средняя является несмещенной и состоятельной оценкой мат. ожидания.
НО, в других источниках я нешел только везде одну формулу: $$\bar x=\frac {\sum\limits_{i=1}^k x_i}{n}$$ и определение: среднее арифметическое наблюдений.

Так где же правда?

С дисперсией думаю более ясно: $D_B=\bar {x^2}-(\bar x)^2$


Вообще-то, формула должна иметь вид $$\bar x=\frac {\sum\limits_{i=1}^kn_ix_i}{\sum\limits_{i=1}^kn_i}$$; в случае, когда $n_1=n_2=\ldots=n_k=1$, получаем $n=\sum\limits_{i=1}^kn_i=k$ и $$\bar x=\frac 1n\sum\limits_{i=1}^nx_i$$.

 
 
 
 
Сообщение24.01.2007, 14:35 
Someone писал(а):
Вообще-то, формула должна иметь вид $$\bar x=\frac {\sum\limits_{i=1}^kn_ix_i}{\sum\limits_{i=1}^kn_i}$$; в случае, когда $n_1=n_2=\ldots=n_k=1$, получаем $n=\sum\limits_{i=1}^kn_i=k$ и $$\bar x=\frac 1n\sum\limits_{i=1}^nx_i$$.

C этим понял...
И еще несколько вопросов:
- Когда мы считаем $\bar{x^2}$, то $$\bar x^2=\frac {\sum\limits_{i=1}^kn_ix_i^2}{\sum\limits_{i=1}^kn_i}$$?

- Немного не ясно представление выборки: (x, x)=(-5, -1), при вычислении выборочного среднего для $X_i$ надо брать среднее арефметичекое $X_1=\frac {(-5-1)}2=-3$?

 
 
 
 
Сообщение24.01.2007, 15:27 
Аватара пользователя
Марк писал(а):
- Немного не ясно представление выборки: (x, x)=(-5, -1), при вычислении выборочного среднего для $X_i$ надо брать среднее арефметичекое $X_1=\frac {(-5-1)}2=-3$?


Видимо, заданы интервалы и частоты попадания в эти интервалы. В формулы обычно подставляют середины интервалов.

 
 
 
 
Сообщение24.01.2007, 16:27 
Someone писал(а):
Видимо, заданы интервалы и частоты попадания в эти интервалы. В формулы обычно подставляют середины интервалов.

Собственно спасибо, пока, вродебы, вопросов больше нету...
Вот нашел неплохой ресурс, думаю соответствует данное теме: Теория Вероятностей в вопросах и задачах, а в частносте: Глава V. Математическая статистика.

 
 
 
 
Сообщение19.02.2007, 20:29 
Как определить "изменение случайной величины из соотношений: $i_{min}=F'(0.001), i_{max}=F'(0.999)$" для распределения Пуассона ($M[X]=D[X]=\lambda$) при $\lambda=12 mod 10 +1$, \lambda \in N$, также даны:
функция дифференциального распределения:
$$\frac{\lambda^i}{i!}exp(-\lambda)$$, и
формула энтропии:
$$\lambda log\frac e\lambda + \sum\limits_{i=0}^{+\infty}\frac {\lambda^i}{i!}exp(-\lambda) log(i!)$$

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group