2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Triangle perimeters inequalities
Сообщение31.05.2012, 14:04 
Аватара пользователя
It is given acute angled triangle $ABC$. Let $H_1, H_2, H_3$ are the feets of the altitudes, $T_1, T_2, T_3$ are the tangent points of incircle with the sides, $L_1, L_2, L_3$ are the intersection points of the internal angle bisectors with the sides. Prove that: $P_{H_1H_2H_3} \leq P_{T_1T_2T_3} \leq P_{L_1L_2L_3} \leq \frac{1}{2}P_{ABC}$.

Bonus problem:

Prove that in any triangle $ABC$ is also true: $P_{J_1J_2J_3} \geq 1/2P_{ABC}$. ($J1,J2,J3$) are the tangent points of the excircles with the triangle sides.

 
 
 [ 1 сообщение ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group