2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.



Начать новую тему Ответить на тему
 
 Задача по геометрии
Сообщение08.04.2012, 20:13 


07/04/11
60
Помогите с задачкой, пожалуйста!
Докажите, что кривые постоянной кривизны параметризуются кривыми на сфере.-как это можно доказать при помощи вольфрама?
Визуализируйте задание кривых на сфере с помощью развертки сферы и локаторов
есть какие-нибудь функции, чтобы облегчить написание этой части кода?

 Профиль  
                  
 
 Re: Задача по геометрии
Сообщение08.04.2012, 20:21 
Заслуженный участник
Аватара пользователя


30/01/09
7068
nastya2011 в сообщении #558095 писал(а):
Докажите, что кривые постоянной кривизны параметризуются кривыми на сфере.-

Возьмём кривую в виде спиральной пружины. Покажите на примере как она "параметризуется кривыми на сфере", и что последнее значит?

 Профиль  
                  
 
 Re: Задача по геометрии
Сообщение08.04.2012, 20:25 


07/04/11
60
мат-ламер
я не очень поняла, что Вас смутило( вот полная задачка: Докажите, что кривые постоянной кривизны параметризуются кривыми на сфере. Визуализируйте задание кривых на сфере с помощью развертки сферы и локаторов. По каждой такой кривой вычислите соответствующую пространственную кривую постоянной кривизны. Реализацию сделайте такой, чтобы изменения сферической кривой приводили к мгновенным изменением соответствующей пространственной кривой.
как лучше реализовать эту задачу, пользуясь вольфрамом математикой?

 Профиль  
                  
 
 Re: Задача по геометрии
Сообщение08.04.2012, 20:30 
Заслуженный участник
Аватара пользователя


30/01/09
7068
nastya2011 в сообщении #558099 писал(а):
мат-ламер я не очень поняла, что Вас смутило

Что означает выражение "параметризуются кривыми на сфере"?

 Профиль  
                  
 
 Re: Задача по геометрии
Сообщение08.04.2012, 22:46 


07/04/11
60
мат-ламер
честно говоря, я не очень поняла условие задачи, если мне помогут объяснением, буду ооч благодарна))
средства программы я вроде знаю) а вот, с условием что то неясно(

 Профиль  
                  
 
 Re: Задача по геометрии
Сообщение08.04.2012, 22:59 
Заслуженный участник
Аватара пользователя


22/01/11
2641
СПб
Что такое "развертка сферы"?

-- Вс апр 08, 2012 23:04:56 --

мат-ламер

М.б. имеется ввиду, что по сферическому образу кривой можно восстановить саму кривую, если известно, что у нее постоянная кривизна?

 Профиль  
                  
 
 Re: Задача по геометрии
Сообщение08.04.2012, 23:13 


07/04/11
60
я не знаю что имеется ввиду(

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 7 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group