2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Conditional inequality
Сообщение01.04.2012, 19:04 
Аватара пользователя
Let $a$, $b$, $c$ are positive real numbers and $abc=1$. Prove that
$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b} \geq \frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}$.

What I would like to know is it а well known problem?

 
 
 [ 1 сообщение ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group