2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Базис
Сообщение29.03.2012, 00:34 
Human в сообщении #553250 писал(а):
про ранг


Спасибо, с рангом разобрался!

А почему эти два вектора могут быть базисом? Я думал, что у векторов с четырьмя координатами базис содержит 4 вектора...Ведь два недостаточно. Или это имеется ввиду, что эти векторы лежат в некоторой плоскости, которая является подпространством четырехмерного пространства и в этой плоскости они являются базисом??

$V=\begin{Bmatrix}
\begin{pmatrix}
 1 \\ 
 1 \\ 
 1 \\ 
 1 \\
\end{pmatrix}
;
\begin{pmatrix}
 3 \\ 
 3 \\ 
 -1 \\ 
 -1 \\
\end{pmatrix}\\ 
\end{Bmatrix}$

А можете, пожалуйста, придумать задачу, аналогичную первой, чтоб была не очень сложной (два-три вектора), но и не очень простой

 
 
 
 Re: Базис
Сообщение29.03.2012, 00:53 
Аватара пользователя
Andrei94 в сообщении #553255 писал(а):
Или это имеется ввиду, что эти векторы лежат в некоторой плоскости, которая является подпространством четырехмерного пространства?

Да, так оно и есть.
Andrei94 в сообщении #553255 писал(а):
А можете, пожалуйста, придумать задачу, аналогичную первой, чтоб была не очень сложной (два-три вектора), но и не очень простой

Ой, я не знаток придумывать задачи. Лучше возьмите какой-нибудь задачник по аналиту (например Беклемишева Л.А.), там наверняка есть задачи на эту тему.

(Оффтоп)

Это, кстати, не тот Беклемишев, которого я раньше упоминал, но они имеют отношение друг к другу :lol:

 
 
 
 Re: Базис
Сообщение29.03.2012, 01:39 
Аватара пользователя
2)
Распространенным типом задач является приведение квадратичной формы к диагональному виду с помощью не просто какого-то, а ортогонального преобразования координат. Так, например, при приведении уравнения кривой второго порядка к главным осям просто привести уравнение к диагональному виду будет малоинтересной задачей -- если у нас эллипс, мы не узнаем его полуосей, так как после неортогонального преобразования координаты не будут декартовыми, если были таковыми раньше.

Хоть в Вашем случае про ортогональность ничего не сказано, кое-какие признаки указывают на то, что исходные данные специально подогнаны под такую процедуру. Например, собственные числа матрицы $A$ целые: $20$ и $-5$. Собственные векторы после нормировки на единицу не содержат радикалов.

Если так, то искомое ортогональное преобразование $x=Sy$ имеет вид:$$\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}0.6&0.8\\0.8&-0.6\end{bmatrix} \begin{bmatrix}y_1\\y_2\end{bmatrix}$$
Тогда $x^{\top} A \;x=y^{\top} S^{\top} A \;S\; y = y^{\top} D\; y$, где$$D=S^{\top} A\; S =\begin{bmatrix}0.6&0.8\\0.8&-0.6\end{bmatrix} \begin{bmatrix}4&12\\12&11\end{bmatrix} \begin{bmatrix}0.6&0.8\\0.8&-0.6\end{bmatrix}=\begin{bmatrix}20&0\\0&-5\end{bmatrix}$$
Это значит, что в новых переменных квадратичная форма имеет вид $20y_1^2-5y_2^2$.

 
 
 
 Re: Базис
Сообщение29.03.2012, 01:46 
Аватара пользователя
svv
Ок, теперь все стало прозрачно, спасибо.

 
 
 
 Re: Базис
Сообщение29.03.2012, 02:07 
Аватара пользователя
Не за что. :P Может быть, ещё лучше было бы поменять местами столбцы в $S$:
$S=\begin{bmatrix}0.8&0.6\\-0.6&0.8\end{bmatrix}$
Это приведёт к тому, что поменяются местами $y_1$ и $y_2$. Смысл в том, что тогда преобразование было бы чистым поворотом (определитель $S$, он же якобиан преобразования, был бы равен $+1$), а сейчас у нас поворот с отражением, якобиан равен $-1$.

 
 
 
 Re: Базис
Сообщение29.03.2012, 22:11 
svv в сообщении #553261 писал(а):
2)
Распространенным типом задач является приведение квадратичной формы к диагональному виду с помощью не просто какого-то, а ортогонального преобразования координат. Так, например, при приведении уравнения кривой второго порядка к главным осям просто привести уравнение к диагональному виду будет малоинтересной задачей -- если у нас эллипс, мы не узнаем его полуосей, так как после неортогонального преобразования координаты не будут декартовыми, если были таковыми раньше.

Хоть в Вашем случае про ортогональность ничего не сказано, кое-какие признаки указывают на то, что исходные данные специально подогнаны под такую процедуру. Например, собственные числа матрицы $A$ целые: $20$ и $-5$. Собственные векторы после нормировки на единицу не содержат радикалов.

Если так, то искомое ортогональное преобразование $x=Sy$ имеет вид:$$\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}0.6&0.8\\0.8&-0.6\end{bmatrix} \begin{bmatrix}y_1\\y_2\end{bmatrix}$$
Тогда $x^{\top} A \;x=y^{\top} S^{\top} A \;S\; y = y^{\top} D\; y$, где$$D=S^{\top} A\; S =\begin{bmatrix}0.6&0.8\\0.8&-0.6\end{bmatrix} \begin{bmatrix}4&12\\12&11\end{bmatrix} \begin{bmatrix}0.6&0.8\\0.8&-0.6\end{bmatrix}=\begin{bmatrix}20&0\\0&-5\end{bmatrix}$$
Это значит, что в новых переменных квадратичная форма имеет вид $20y_1^2-5y_2^2$.


$A=\begin{pmatrix}
 4& 12\\ 
 12& 11
\end{pmatrix}$

А как вы так сделали? Вот что у меня получилось что-то другое и не знаю - как дальше делать...

$(4-\lambda)(11-\lambda)-144=0$

$\lambda_1=-5$

$\lambda_2=20$

1) $\lambda_1=-5$

Система для нахождения собственного вектора $\vec{y}_1=(\alpha_1\;\,\,\,\beta_1)^T$

$\left\{\begin{matrix}
9\alpha_1+12\beta_1=0 \\ 
12\alpha_1+16\beta_1=0 \\ 
\end{matrix}\right.$

$\left\{\begin{matrix}
3\alpha_1+4\beta_1=0 \\ 
3\alpha_1+4\beta_1=0 \\ 
\end{matrix}\right.$

$\beta_1=\frac{C}{4}$

$\vec{y}_1=(3\;\,\,\,-4)^T$

2) $\lambda_2=20$

Система для нахождения собственного вектора $\vec{y}_2=(\alpha_2\;\,\,\,\beta_2)^T$

$\left\{\begin{matrix}
-16\alpha_1+12\beta_1=0 \\ 
12\alpha_1-19\beta_1=0 \\ 
\end{matrix}\right.$


$\vec{y}_2=(\text{кривые числа})^T$

А как дальше?

 
 
 
 Re: Базис
Сообщение29.03.2012, 23:37 
Аватара пользователя
Andrei94 в сообщении #553589 писал(а):
$\vec{y}_1=(3\;\,\,\,-4)^T$

Должно быть $\vec{y}_1=(4\;\,\,\,-3)^T$, перепроверьте.
Andrei94 в сообщении #553589 писал(а):
Система для нахождения собственного вектора $\vec{y}_2=(\alpha_2\;\,\,\,\beta_2)^T$

$\left\{\begin{matrix} -16\alpha_1+12\beta_1=0 \\ 12\alpha_1-19\beta_1=0 \\ \end{matrix}\right.$


Должно быть $\left\{\begin{matrix} -16\alpha_1+12\beta_1=0 \\ 12\alpha_1-9\beta_1=0 \\ \end{matrix}\right.$

 
 
 
 Re: Базис
Сообщение30.03.2012, 00:40 
Human в сообщении #553623 писал(а):
Andrei94 в сообщении #553589 писал(а):
$\vec{y}_1=(3\;\,\,\,-4)^T$

Должно быть $\vec{y}_1=(4\;\,\,\,-3)^T$, перепроверьте.
Andrei94 в сообщении #553589 писал(а):
Система для нахождения собственного вектора $\vec{y}_2=(\alpha_2\;\,\,\,\beta_2)^T$

$\left\{\begin{matrix} -16\alpha_1+12\beta_1=0 \\ 12\alpha_1-19\beta_1=0 \\ \end{matrix}\right.$


Должно быть $\left\{\begin{matrix} -16\alpha_1+12\beta_1=0 \\ 12\alpha_1-9\beta_1=0 \\ \end{matrix}\right.$


Да, спасибо.

Получается собственные вектора $\vec{y}_1=(4\;\,\,\,-3)^T$ и $\vec{y}_2=(3\;\,\,\,4)^T$

Если нормировать и записать в матрицу, то действительно получается та матрица перехода, которая была у svv

$$\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}0.6&0.8\\0.8&-0.6\end{bmatrix} \begin{bmatrix}y_1\\y_2\end{bmatrix}$$

А что дальше происходит -- не понимаю...А именно вот это не понятно...Можете чуть-чуть слов добавить о том, что произошло...?

Цитата:
Тогда $x^{\top} A \;x=y^{\top} S^{\top} A \;S\; y = y^{\top} D\; y$, где$$D=S^{\top} A\; S =\begin{bmatrix}0.6&0.8\\0.8&-0.6\end{bmatrix} \begin{bmatrix}4&12\\12&11\end{bmatrix} \begin{bmatrix}0.6&0.8\\0.8&-0.6\end{bmatrix}=\begin{bmatrix}20&0\\0&-5\end{bmatrix}$$
Это значит, что в новых переменных квадратичная форма имеет вид $20y_1^2-5y_2^2$

 
 
 
 Re: Базис
Сообщение30.03.2012, 00:45 
Аватара пользователя
$x^{\top} A \;x$ - это так на матричном языке можно записать квадратичную форму в начальных координатах, $A$ - матрица формы. Мы делаем замену переменных $x=Sy$ с помощью полученной матрицы перехода $S$. Все, что происходит дальше - простая подстановка этой формулы в начальную форму и приведение к виду $y^{\top}Dy$, где $D$ - матрица формы уже в новых координатах.

 
 
 
 Re: Базис
Сообщение30.03.2012, 00:54 
Human в сообщении #553643 писал(а):
$x^{\top} A \;x$ - это так на матричном языке можно записать квадратичную форму в начальных координатах, $A$ - матрица формы. Мы делаем замену переменных $x=Sy$ с помощью полученной матрицы перехода $S$. Все, что происходит дальше - простая подстановка этой формулы в начальную форму и приведение к виду $y^{\top}Dy$, где $D$ - матрица формы уже в новых координатах.


Спасибо, теперь все понятно!

-- 30.03.2012, 01:03 --

1) Найти ортонормированный базис подпространства
$V=\begin{Bmatrix}
\begin{pmatrix}
 1 \\ 
 1 \\ 
 1 \\ 
 1 \\
\end{pmatrix}
;
\begin{pmatrix}
 3 \\ 
 3 \\ 
 -1 \\ 
 -1 \\
\end{pmatrix}\\ 
\end{Bmatrix}$

Попробую это задание сделать с помощью Грамма-Шмидта.

$\vec a=\begin{pmatrix}
 1 \\ 
 1 \\ 
 1 \\ 
 1 \\
\end{pmatrix}$

$\vec b=\begin{pmatrix}
 3 \\ 
 3 \\ 
 -1 \\ 
 -1 \\
\end{pmatrix}$

$(\vec a, \vec b)=4$

$(\vec b, \vec b)=9+9+1+1=20$

$\mathbf{proj}_{\mathbf{b}}\,\mathbf{a} = 
{\langle \mathbf{a}, \mathbf{b} \rangle
\over
\langle \mathbf{b}, \mathbf{b}\rangle}
\mathbf{b}=0,2\cdot \begin{pmatrix}
 3 \\ 
 3 \\ 
 -1 \\ 
 -1 \\
\end{pmatrix}$

А ведь проекция должна быть скаляром...

 
 
 
 Re: Базис
Сообщение30.03.2012, 01:03 
Аватара пользователя
Вообще говоря, матрицу $D$ при таком решении не стоит вычислять: она будет диагональная, а на диагонали будут стоять собственные числа матрицы $A$, причем в таком порядке, в каком стоят соответствующие собственные векторы в матрице $S$.

-- 30.03.2012, 01:06 --

Если Вы читали про Грама-Шмидта в Википедии, то там проекция действительно есть вектор, так что все в порядке.

-- 30.03.2012, 01:15 --

Да и вообще проекция всегда есть вектор. Просто имеется в виду разложение вектора $\mathbf{a}$ на сумму вектора, коллинеарного $\mathbf{b}$ (это и есть проекция $\mathbf{a}$ на $\mathbf{b}$), и вектора, ортогонального $\mathbf{b}$. Оператор проекции как раз позволяет найти коллинеарный вектор, и если его вычесть из $\mathbf{a}$, то как раз и останется вектор, ортогональный $\mathbf{b}$. В этом вся суть метода Грама-Шмидта.

 
 
 
 Re: Базис
Сообщение30.03.2012, 01:19 
Human в сообщении #553648 писал(а):
Вообще говоря, матрицу $D$ при таком решении не стоит вычислять: она будет диагональная, а на диагонали будут стоять собственные числа матрицы $A$, причем в таком порядке, в каком стоят соответствующие собственные векторы в матрице $S$.


А как узнать - в каком порядке должны стоять собственные векторы в матрице перехода $S$?

-- 30.03.2012, 01:25 --

Human в сообщении #553648 писал(а):

Если Вы читали про Грама-Шмидта в Википедии, то там проекция действительно есть вектор, так что все в порядке.

-- 30.03.2012, 01:15 --

Да и вообще проекция всегда есть вектор. Просто имеется в виду разложение вектора $\mathbf{a}$ на сумму вектора, коллинеарного $\mathbf{b}$ (это и есть проекция $\mathbf{a}$ на $\mathbf{b}$), и вектора, ортогонального $\mathbf{b}$. Оператор проекции как раз позволяет найти коллинеарный вектор, и если его вычесть из $\mathbf{a}$, то как раз и останется вектор, ортогональный $\mathbf{b}$. В этом вся суть метода Грама-Шмидта.


Спасибо, суть метода ясно. Просчитал в википедии. Но пока что не понятно это

Цитата:
Классический процесс Грама — Шмидта выполняется следующим образом:

$$
\begin{array}{lclr}
\mathbf{b}_1 & = & \mathbf{a}_1 & (1) \\
\mathbf{b}_2 & = & \mathbf{a}_2-\mathbf{proj}_{\mathbf{b}_1}\,\mathbf{a}_2 & (2) \\
\mathbf{b}_3 & = & \mathbf{a}_3-\mathbf{proj}_{\mathbf{b}_1}\,\mathbf{a}_3-\mathbf{proj}_{\mathbf{b}_2}\,\mathbf{a}_3 & (3) \\
\mathbf{b}_4 & = & \mathbf{a}_4-\mathbf{proj}_{\mathbf{b}_1}\,\mathbf{a}_4-\mathbf{proj}_{\mathbf{b}_2}\,\mathbf{a}_4-\mathbf{proj}_{\mathbf{b}_3}\,\mathbf{a}_4 & (4) \\
& \vdots & & \\
\mathbf{b}_N & = & \mathbf{a}_N-\displaystyle\sum_{j=1}^{N-1}\mathbf{proj}_{\mathbf{b}_j}\,\mathbf{a}_N & (5)
\end{array}$$


$\mathbf{a}_1,\;\ldots,\;\mathbf{a}_N$ -- это имеются ввиду те вектора, на которые раскладывается вектор $\mathbf{a}$?

 
 
 
 Re: Базис
Сообщение30.03.2012, 01:26 
Аватара пользователя
А без разницы, по-моему: все равно преобразование будет ортогональное. Получатся, конечно, разные формы, но все они будут отличаться только расположением коэффициентов. Например,
svv в сообщении #553263 писал(а):
Может быть, ещё лучше было бы поменять местами столбцы в $S$:
$S=\begin{bmatrix}0.8&0.6\\-0.6&0.8\end{bmatrix}$
Это приведёт к тому, что поменяются местами $y_1$ и $y_2$. Смысл в том, что тогда преобразование было бы чистым поворотом (определитель $S$, он же якобиан преобразования, был бы равен $+1$), а сейчас у нас поворот с отражением, якобиан равен $-1$.

Здесь уже дело вкуса: svv, например, больше устраивает такой вариант, потому что преобразование координат просто сводится к повороту, без отражения.

-- 30.03.2012, 01:29 --

Andrei94 в сообщении #553652 писал(а):
$\mathbf{a}_1,\;\ldots,\;\mathbf{a}_N$ -- это имеются ввиду те вектора, на которые раскладывается вектор $\mathbf{a}$?

Нет, это начальная система векторов, которая Вам дана в условии.

 
 
 
 Re: Базис
Сообщение30.03.2012, 01:29 

(Оффтоп)

здесь была ерунда


-- 30.03.2012, 01:30 --

Human в сообщении #553653 писал(а):
А без разницы, по-моему: все равно преобразование будет ортогональное. Получатся, конечно, разные формы, но все они будут отличаться только расположением коэффициентов. Например,
svv в сообщении #553263 писал(а):
Может быть, ещё лучше было бы поменять местами столбцы в $S$:
$S=\begin{bmatrix}0.8&0.6\\-0.6&0.8\end{bmatrix}$
Это приведёт к тому, что поменяются местами $y_1$ и $y_2$. Смысл в том, что тогда преобразование было бы чистым поворотом (определитель $S$, он же якобиан преобразования, был бы равен $+1$), а сейчас у нас поворот с отражением, якобиан равен $-1$.

Здесь уже дело вкуса: svv, например, больше устраивает такой вариант, потому что преобразование координат просто сводится к повороту, без отражения.


Теперь понятно, спасибо.

 
 
 
 Re: Базис
Сообщение30.03.2012, 01:31 
Аватара пользователя
Andrei94 в сообщении #553654 писал(а):
То есть у нас должно быть так?

Да. Ну, проверьте, ортогональны они?

 
 
 [ Сообщений: 34 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group