2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Неопределенный интеграл
Сообщение01.03.2012, 17:56 
Здравствуйте. Помогите взять интеграл, уже перепробовал многое, но ничего не получается. $\int \sqrt{\frac{1-x}{1+x}}\frac{dx}{x}$

 
 
 
 Re: Неопределенный интеграл
Сообщение01.03.2012, 18:09 
Аватара пользователя
Вообще-то, тут применяется стандартная подстановка, чтобы избавиться от иррациональности.
А что Вы пробовали, и что получилось?

 
 
 
 Re: Неопределенный интеграл
Сообщение01.03.2012, 18:21 
Спасибо за ответ! Да, первым делом сразу подстановку пробовал, например при $t=\sqrt{1+x}$ получился интеграл $\int{\frac{\sqrt{2-t^2}}{t^2-1}}dt$, а при $t=\sqrt{1-x}$ получилось $\int{\frac{t^2}{\sqrt{2-t^2}(1-t^2)}dt}$.

 
 
 
 Re: Неопределенный интеграл
Сообщение01.03.2012, 18:30 
Если под корнем стоит дробно-линейное выражение и больше никаких иррациональностей нет, то стандартно именно этот корень и принимают за новую переменную.

 
 
 
 Re: Неопределенный интеграл
Сообщение02.03.2012, 12:03 
ewert, спасибо. Всё получилось.

 
 
 
 Re: Неопределенный интеграл
Сообщение02.03.2012, 16:28 
И ещё если можно, помогите с одним интегралом. В учебнике и в онлайн решебниках ответ один и тот же, а получается другое. Вот моё решение:
$\int\frac{dx}{cosxsin^3x}=\lvert{\tg x=t,\sin x=\frac{t}{\sqrt{1+t^2}},\cos x=\frac{1}{\sqrt{1+t^2}},dx=\frac{dt}{1+t^2}}\rvert=\int\frac{1}{\frac{t^3}{\sqrt{(1+t^2)^4}}}\frac{dt}{1+t^2}=\int\frac{1+t^2}{t^3}dt=\int{t^{-3}}dt+\int\frac{dt}{t}=\frac{t^{-2}}{-2}+\ln{t}+C=-\frac{1}{2\tg^2x}+\ln\lvert{\tg x}\rvert+C$.
В ответах же вместо $-\frac{1}{2\tg^2x}$ выдают $-\frac{1}{2\sin^2x}$

 
 
 
 Re: Неопределенный интеграл
Сообщение02.03.2012, 16:31 
Это одно и то же с точностью до константы.

 
 
 
 Re: Неопределенный интеграл
Сообщение02.03.2012, 19:13 
ewert, точно)) спасибо большое!

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group