«Естественным обобщением задачи Пифагора является задача Герона, названная по имени древнегреческого математика Герона, жившего в Александрии: найти все треугольники с целочисленными сторонами, площади которых также выражаются целым числом. Эта задача отличается от задачи Пифагора, тем, что требование наличия прямого угла заменено требованием целочисленности площади…..Хотя известно значительное число треугольников Герона, не существует общей формулы, описывающей все эти треугольники». Это цитата из книги О.Оре «Приглашение в теорию чисел». Перевод с английского, Л.А.Савина и А.П.Савин, Москва, «Наука», 1980г.стр.67-68.
Поразмыслив над задачей, я пришёл к утвержению: любая пара взаимно простых чисел
и
,
, дает решение для восьми примитивных треугольников Герона. Примитивных в том смысле, что числа
не имеют общего делителя. Мною получено восемь тождеств, каждое из которых дает бесконечное число решений задачи ввиду бесчисленности числа пар взаимно простых чисел
и
.
;
;
;
;
;
;
;
;
Кто знает другие формулы и где можно об этом почитать подробнее, подскажите пожалуйста?
Дед.