Здравствуйте! Подскажите пожалуйста, как быть с задачей:
________________________________________________________________________
Предложить разностную схему, аппроксимирующую дифференциальную задачу
![$\[\frac{{\partial U}}{{\partial t}} + \frac{{\partial U}}{{\partial x}} + \frac{{\partial U}}{{\partial y}} = f(t,x,y)\]$ $\[\frac{{\partial U}}{{\partial t}} + \frac{{\partial U}}{{\partial x}} + \frac{{\partial U}}{{\partial y}} = f(t,x,y)\]$](https://dxdy-02.korotkov.co.uk/f/1/1/9/119b122b9f924e98b78a65b828e4074382.png)
,
![$\[U(0,x,y) = q(x,y)\]$ $\[U(0,x,y) = q(x,y)\]$](https://dxdy-03.korotkov.co.uk/f/6/f/3/6f31eedfc2f114bb499bbb10f6b6aa6782.png)
,
![$\[U(t,x,y) = U(t,x + 1,y)\]$ $\[U(t,x,y) = U(t,x + 1,y)\]$](https://dxdy-01.korotkov.co.uk/f/8/7/3/8730b3efa449482b06d949b34371e52482.png)
,
![$\[U(t,x,y) = U(t,x,y + 1)\]$ $\[U(t,x,y) = U(t,x,y + 1)\]$](https://dxdy-04.korotkov.co.uk/f/f/7/a/f7a09793ef4991582963368dd6f0d52682.png)
,
![$\[0 \leqslant t \leqslant T\]$ $\[0 \leqslant t \leqslant T\]$](https://dxdy-03.korotkov.co.uk/f/e/e/5/ee5e0088edddbb4576a5d16064ae392682.png)
,
![$\[ - \infty < x,y < + \infty \]$ $\[ - \infty < x,y < + \infty \]$](https://dxdy-01.korotkov.co.uk/f/8/3/1/831a87782d74573888c678d58ba3c4c982.png)
________________________________________________________________________
Насколько я понимаю, разностная схема будет выглядеть, например так:
![$\[{t_n} = n\tau \]$ $\[{t_n} = n\tau \]$](https://dxdy-04.korotkov.co.uk/f/f/e/1/fe1f0e0ee25aa65f5435a5075512fa9f82.png)
,
![$\[{x_m} = mh\]$ $\[{x_m} = mh\]$](https://dxdy-03.korotkov.co.uk/f/e/6/6/e669906598b9e1f5f0aabea20073a6f582.png)
,
![$\[{y_k} = kg\]$ $\[{y_k} = kg\]$](https://dxdy-03.korotkov.co.uk/f/e/d/1/ed10c0a4ca5c7a5a3025a2576459991f82.png)
,
![$\[k,m = 0, \pm 1, \pm 2, \ldots \]$ $\[k,m = 0, \pm 1, \pm 2, \ldots \]$](https://dxdy-03.korotkov.co.uk/f/e/e/1/ee18bc7be183a9f1c2231848bf32c7e582.png)
,
![$\[n = 0,1,2, \ldots ,N\]$ $\[n = 0,1,2, \ldots ,N\]$](https://dxdy-02.korotkov.co.uk/f/9/3/0/9306ee064850e10cb3cfba46a5aa5f1182.png)
![$\[\begin{gathered}
\frac{{U({t_{n + 1}},{x_m},{y_k}) - U({t_n},{x_m},{y_k})}}{\tau } + \frac{{U({t_n},{x_{m + 1}},{y_k}) - U({t_n},{x_m},{y_k})}}{h} + \frac{{U({t_n},{x_m},{y_{k + 1}}) - U({t_n},{x_m},{y_k})}}{g} = \hfill \\
= f({t_n},{x_m},{y_k}) \hfill \\
\end{gathered} \]$ $\[\begin{gathered}
\frac{{U({t_{n + 1}},{x_m},{y_k}) - U({t_n},{x_m},{y_k})}}{\tau } + \frac{{U({t_n},{x_{m + 1}},{y_k}) - U({t_n},{x_m},{y_k})}}{h} + \frac{{U({t_n},{x_m},{y_{k + 1}}) - U({t_n},{x_m},{y_k})}}{g} = \hfill \\
= f({t_n},{x_m},{y_k}) \hfill \\
\end{gathered} \]$](https://dxdy-04.korotkov.co.uk/f/f/1/a/f1a5da03c32cc8ed5ea27114e4fda40682.png)
Проблема в том, как записать в разностной схеме условия
![$\[U(t,x,y) = U(t,x + 1,y)\]$ $\[U(t,x,y) = U(t,x + 1,y)\]$](https://dxdy-01.korotkov.co.uk/f/8/7/3/8730b3efa449482b06d949b34371e52482.png)
,
![$\[U(t,x,y) = U(t,x,y + 1)\]$ $\[U(t,x,y) = U(t,x,y + 1)\]$](https://dxdy-04.korotkov.co.uk/f/f/7/a/f7a09793ef4991582963368dd6f0d52682.png)
, да так чтобы еще и проверить их аппроксимацию.