2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 2 кратких вопроса по линейным пространствам
Сообщение07.12.2011, 00:21 
1) Чем линейная оболочка отличается от пространства?

2) Какой можно привести пример подпространства $L$ пространства $\mathbb{R}^4$, если $\operatorname{dim} L=3$?

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 00:29 
1) От линейного пространства? В сущности ничем: всякая линейная оболочка — линейное (под)пространство по определению, и всякое линейное пространство — линейная оболочка, натянутая на базисные векторы.

2) $R^3$?

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 00:29 
Аватара пользователя
1) Лин. оболочка образует некое подпространство - и всё.
2) ну подумайте

-- Ср дек 07, 2011 00:29:55 --

уже написали

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 00:31 
Аватара пользователя
1) "Пушка - это особь статья, а мортира - это особь статья" (c)
2) $\mathbb R^3$
_________________
уже дважды написали.

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 00:45 
Joker_vD в сообщении #512284 писал(а):
1) От линейного пространства? В сущности ничем: всякая линейная оболочка — линейное (под)пространство по определению, и всякое линейное пространство — линейная оболочка, натянутая на базисные векторы.

2) $R^3$?


Спасибо!

1) А что значит натянутая? Допустим у нас есть три базисных вектора. Линейная оболочка -- это обязательно -- параллелепипед, натянутый на эти три вектора, начало у которых помещено в одну точку или могут быть альтернативы?

2) А могут быть варианты?)) Или только $R^3$? Допустим какая-то ограниченная область в $R^3$ Может являться подпространством размерности пространства $R^4$?

-- 07.12.2011, 00:47 --

Dan B-Yallay в сообщении #512286 писал(а):
1) "Пушка - это особь статья, а мортира - это особь статья" (c)
.


А шо це таке?)

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 09:49 
lampard в сообщении #512289 писал(а):
Допустим какая-то ограниченная область в $R^3$ Может являться подпространством размерности пространства $R^4$?

Никакая ограниченная область в принципе не может быть подпространством.

lampard в сообщении #512289 писал(а):
Допустим у нас есть три базисных вектора. Линейная оболочка -- это обязательно -- параллелепипед, натянутый на эти три вектора,

Нет, конечно. Читайте определение.

lampard в сообщении #512289 писал(а):
А что значит натянутая?

Просто общеупотребительный жаргон. Любая линейная оболочка порождается неким набором векторов, но вместо "порождаемая" чаще говорят "натянутая на".

Joker_vD в сообщении #512284 писал(а):
В сущности ничем: всякая линейная оболочка — линейное (под)пространство по определению,

Не по определению: это хоть и очень простая, но -- теорема.

Dan B-Yallay в сообщении #512286 писал(а):
2) $\mathbb R^3$
_________________
уже дважды написали.

И совершенно напрасно, между прочим. ТщательнЕе надо.

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 13:36 
Аватара пользователя
2)
множество линейных комбинаций трех фиксированных линейно независимых векторов: $\mathbf{x}=x_1 \mathbf{e_1}+x_2 \mathbf{e_2}+x_3 \mathbf{e_3}$
множество векторов $\mathbf{x}$, ортогональных данному ненулевому $\mathbf{a}$: $(\mathbf{x}, \mathbf{a})=0 $
множество векторов $\mathbf{x}$, компоненты которых удовлетворяют условию $\alpha_1 x_1+\alpha_2 x_2+\alpha_3 x_3+\alpha_4 x_4=0$, где не все $\alpha_i=0$
множество векторов $\mathbf{x}$, аннулирующих данную ненулевую форму $\alpha$: $\alpha(\mathbf{x})=0$

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 16:24 
ewert в сообщении #512366 писал(а):
Не по определению: это хоть и очень простая, но -- теорема.

Нифига, линейной оболочкой, натянутой на векторы $x_1,\dots,x_n$, называется наименьшее подпространство, содержащее эти векторы. А то, что она как множество выглядит $\{\alpha_1x_1+\ldots+\alpha_nx_n\in\mathbb L\mid \alpha_i\in k\}$ — это хоть и очень простая, но теорема.

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 16:34 
Joker_vD в сообщении #512505 писал(а):
Нифига, линейной оболочкой, натянутой на векторы $x_1,\dots,x_n$, называется наименьшее подпространство, содержащее эти векторы.


Фига - в учебнике Кострикина линейной оболочкой $<S>$ называется множество всех линейных комбинаций конечных систем векторов из $S.$
Все зависит от того какая аксиоматика была выбрана преподавателем.

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 16:38 
Аватара пользователя
Дано:
ewert писал(а):
Joker_vD в сообщении #512284 писал(а):
В сущности ничем: всякая линейная оболочка — линейное (под)пространство по определению,
Не по определению: это хоть и очень простая, но -- теорема.
Определить: каким определением линейной оболочки пользуется ewert.
Ответ. Он пользуется определением: "это множество всех векторов, получаемых линейными комбинациями заданных векторов". :D

-- Ср дек 07, 2011 15:43:58 --

А теперь давайте решим, чьё определение лучше.

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 18:55 
Аватара пользователя
ewert в сообщении #512366 писал(а):
Dan B-Yallay писал(а):
2) $\mathbb R^3$
_________________
уже дважды написали.

И совершенно напрасно, между прочим. ТщательнЕе надо.

А шо, $\mathbb R^3$ в качестве примера трехмерного подпространства $\mathbb R^4$ уже не котируется?

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 19:09 

(Оффтоп)

svv
Мое, ясен пень. Сразу можно вводить булеву решетку на подпространствах :D

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 20:44 
svv в сообщении #512512 писал(а):
А теперь давайте решим, чьё определение лучше.

Моё (в смысле, по слухам, Кострикина -- сам-то я его, кажется, не читал). Оно логически проще. Хотя бы потому, что само существование минимально подпространства -- тоже необходимо доказывать. Доказательство же подпространственности (и потом минимальности) линейной оболочки как множества линейных комбинаций -- гораздо очевиднее и тривиальнее.

Dan B-Yallay в сообщении #512579 писал(а):
А шо, $\mathbb R^3$ в качестве примера трехмерного подпространства $\mathbb R^4$ уже не котируется?

Как пример, конечно, вполне сгодился бы, да вот беда: сугубо формально Эр-три не только не входит в Эр-четыре, но даже и не имеет с ним ничего общего.

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 21:10 
ewert в сообщении #512637 писал(а):
сугубо формально Эр-три не только не входит в Эр-четыре, но даже и не имеет с ним ничего общего.

Зато попытка сообразить, как оно неформально может в него входить, выдает сразу аж четыре подпространства размерности три.

 
 
 
 Re: 2 кратких вопроса по пространствам
Сообщение07.12.2011, 21:18 

(Оффтоп)

Joker_vD в сообщении #512653 писал(а):
Зато попытка сообразить, как оно неформально может в него входить, выдает сразу аж четыре подпространства размерности три.

"Неформально" оно входить не может; не развращайте мОлодежь. А если и бросится в глаза, то никак не четырьмя вариантами: или тремя, или бесконечностью.

 
 
 [ Сообщений: 17 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group