2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 logarithmic inequality
Сообщение15.11.2011, 18:28 
if $a\;,b\;c\geq 2\;,$ then Minimum value of $P=\log_{a+b}c+\log_{b+c}a+\log_{c+a}b$

 
 
 
 Re: logarithmic inequality
Сообщение16.11.2011, 00:28 
Аватара пользователя
http://imomath.com/othercomp/Bul/BulMO366.pdf see problem 2.
You can use Nesbit inequality.

 
 
 
 Re: logarithmic inequality
Сообщение16.11.2011, 10:22 
but ins it is unsolved

 
 
 
 Re: logarithmic inequality
Сообщение16.11.2011, 21:31 
Аватара пользователя
Yes. It is not solved (even in the books dedicated to bulgarian math olympiad) but it isn't difficult to solve it.
It is not difficult do see that $a+b \ge 2\sqrt{ab}$.
Using this and some logarithms' properties http://www.andrews.edu/~calkins/math/we ... numb17.htm
like reciprocal property and base property 3 from "Four base properties" you can get an inequality with three variables $log_{a}b=u, log_{b}c=v, log_{c}a=w$ it is a Nesbit inequality for u,v,w.

 
 
 
 Re: logarithmic inequality
Сообщение17.11.2011, 16:21 
Действительно всё сводится к неравенству Nesbitt'а,которое для положительных $x,y,z$ имеет вид:$\sum \limits _{cycl (x,y,z)}\dfrac x{y+z}\geq \dfrac32$.
Покажем,сначала,что при $x,y\geq 2,\ln (x+y)\leq \ln x+\ln y.$
Предположим $x\geq y$,тогда: $$\ln (x+y)\leq \ln (2x)=\ln 2+\ln y\leq \ln y+\ln x \qquad (1)$$
С помощью (1) получим: $$\sum \limits _{cycl(a,b,c)}\log _{a+b}c=\sum \limits _{cycl(a,b,c)}\dfrac {\ln c}{\ln (a+b)}\geq \sum \limits _{cycl(a,b,c)}\dfrac {\ln c}{\ln a+\ln b}\geq \dfrac 32\qquad (2)$$
Заметим теперь,что первая сумма в (2) равна $\dfrac 32$ при $a=b=c=2$.

 
 
 
 Re: logarithmic inequality
Сообщение18.11.2011, 01:40 
Аватара пользователя
I think Bulgaria as well as Russia is a country of great mathematicians. My favorite problems of this kind are Canadian MO 1995 inequality as well as Bulgarian MO 2001 - Regional Round equation and some Russian problems.

 
 
 
 Re: logarithmic inequality
Сообщение19.11.2011, 15:53 
thanks mihiv and ins

 
 
 [ Сообщений: 7 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group