2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Консервативная разностная схема
Сообщение12.11.2011, 12:20 
Аватара пользователя
В теории разностных схем (напр. у А.А.Самарского) вводится понятие консервативных разностных схем, то есть таких, которые удовлетворяют требованию выполнения дискретных аналогов законов сохранения. Кое-где встречается термин, связанный с этим понятием, - консервативная аппроксимация.
Также попадается понятие консервативных вариационно-разностных схем.
Меня интересует, существует ли некое обобщенное понятие консервативных дискретных моделей, употребляемое в таком же смысле как консервативная разностная схема? Речь идет о дискретных моделях не обязательно представляющих собой разностные схемы, но построенные на базе, например,метода конечных элементов или метода интегральных уравнений и проч.

 
 
 
 Re: Консервативная разностная схема
Сообщение14.11.2011, 14:13 
Консервативность в общем случае не зависит от выбора вычислительного метода. Как пример, рассмотрите соответствующий интегральный закон сохранения для любого дифференциального уравнения. А теперь аппроксимируйте его любым способом (МКЭ, МГЭ и т.д.)

 
 
 
 Re: Консервативная разностная схема
Сообщение15.11.2011, 03:52 
Аватара пользователя
Да. Но в литературе термин применяется почему-то только для МКР.
Тот же МКЭ обладает свойством консервативности по-определению: распределение потенциала минимизирует соответствующий функционал таким образом, чтобы при этом удовлетворялась краевая задача (а следовательно и законы сохранения).
Хочу сослаться на источник, чтобы правомерно применить термин для других методов в соей работе.

 
 
 
 Re: Консервативная разностная схема
Сообщение15.11.2011, 09:59 
Аватара пользователя
Fgolm в сообщении #502733 писал(а):
В теории разностных схем (напр. у А.А.Самарского) вводится понятие консервативных разностных схем, то есть таких, которые удовлетворяют требованию выполнения дискретных аналогов законов сохранения.

То есть таких, для которых из выполнения дискретного аналога закона сохранения для элементарного объема следует выполение этого аналога для любой части расчетной области (составленной из элементарных объемов).

 
 
 
 Re: Консервативная разностная схема
Сообщение15.11.2011, 19:50 
Аватара пользователя
TOTAL в сообщении #504015 писал(а):
То есть таких, для которых из выполнения дискретного аналога закона сохранения для элементарного объема следует выполение этого аналога для любой части расчетной области (составленной из элементарных объемов).

Спасибо. Замечательное дополнение!
Дело в том, что мы с научным руководителем предложили один подход (в рамках некоторого численного метода), который для некоторого класса задач дает существенное улучшение характеристик численного решения задачи, по сравнению с классической реализацией некоторого численного метода. Выяснилось, что предложенная нами схема является консервативной (причем именно в том смысле как написал TOTAL). Выполнение дискретного аналога закона сохранения для элементарного объема очевидно, но далее я для конкретного численного примера показываю, что из этого вытекает удовлетворение дискретного аналога закона сохранения для некоторой области, охватывающей произвольную часть объема, в которую входит большое число элементарных объемов. То есть типичный случай консервативности.
Дело в том, что этот вопрос не обсуждался, и первоначальная постановка совершенно не касалась понятия консервативности. Мы об этом понятии попросту не слышали: в рамках численного метода, которым мы занимаемся понятие консервативности никем в литературе не употреблялось. Я думаю, что этот вопрос попросту был упущен из виду.
Теперь, в своей работе, я хочу указать на этот факт. Утверждая, что на базе такого-то численного метода построена консервативная дискретная модель, в отличие от классического подхода, который свойством консервативности, вообще говоря не обладает.
Но мне бы хотелось "заручиться поддержкой авторитетов". То есть дать ссылку на источник, в котором употребляется понятие консервативности в более общем смысле (на только для разностной схемы, а вообще для любой дискретной модели).

 
 
 
 Re: Консервативная разностная схема
Сообщение15.11.2011, 20:01 
Аватара пользователя
Просто покажите
Fgolm в сообщении #504220 писал(а):
удовлетворение дискретного аналога закона сохранения для некоторой области, охватывающей произвольную часть объема, в которую входит большое число элементарных объемов.

не только
Fgolm в сообщении #504220 писал(а):
для конкретного численного примера

а и в общем случае. Не считая никаких примеров, ручкой на бумажке. Взяв изменение сохраняющейся величины на одной итерации для одной ячейки и просуммировав по всем ячейкам (достаточно проделать сие для всей расчетной области вообще, а не выделять какие-то слабоформализуемые "достаточно большие объемы"). Ежели в сумме получится нуль, то схема таки заслуживает высокое звание "консервативная".

 
 
 [ Сообщений: 6 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group