2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Система линейных неравенств и уравнений.
Сообщение01.11.2011, 18:04 
Добрый день!

У меня имеется система линейных неравенств и линейное уравнение. Как бы мне все это решить? Под решением я понимаю: найти интервалы в которых лежат переменные.

Переменных много, так что начертить все это не получается. Все это напоминает линейное программирование, за исключинием того, что ничего максимизировать не требуется.

 
 
 
 Re: Система линейных неравенств и уравнений.
Сообщение01.11.2011, 19:18 
Аватара пользователя
Bridgeport в сообщении #498215 писал(а):
Под решением я понимаю: найти интервалы в которых лежат переменные.

А вы осознаёте, что множество, задаваемое системой линейных неравенств с $n$ переменными далеко не всегда является кубиком в $\mathbb{R}^n$? Как вам, например, такая система: {$x+y<3, x-y<5$}? И как вы хотите её решить?

 
 
 
 Re: Система линейных неравенств и уравнений.
Сообщение01.11.2011, 20:09 
Да, сформулированно плохо!

Вот пример того, что мне надо $0 \leq 3x+4y\leq 5$, $x\geq-2 $, $y\geq -3$, $x+y=0$

Интересующиe меня интервалы в этом случае $x \in [-2,0]$, и $ y \in [0, 2]$

 
 
 
 Re: Система линейных неравенств и уравнений.
Сообщение01.11.2011, 20:12 
Аватара пользователя
Bridgeport в сообщении #498215 писал(а):
Как бы мне все это решить? Под решением я понимаю: найти интервалы в которых лежат переменные.

Сведите к задаче линейного программирования.

 
 
 
 Re: Система линейных неравенств и уравнений.
Сообщение01.11.2011, 20:13 
Аватара пользователя
Bridgeport в сообщении #498215 писал(а):
за исключинием того, что ничего максимизировать не требуется
А Вы сами потребуйте. Примерно так: "Ну-ка максимизируй мне x". Вот и будет верхняя граница одного интервала...

 
 
 
 Re: Система линейных неравенств и уравнений.
Сообщение01.11.2011, 20:29 
Аватара пользователя
мат-ламер в сообщении #498271 писал(а):
Bridgeport в сообщении #498215 писал(а):
Как бы мне все это решить? Под решением я понимаю: найти интервалы в которых лежат переменные.

Сведите к задаче линейного программирования.

Когда писал, не видел Вашего предыдущего поста. В двумерном случае проще нарисовать картинку.

 
 
 
 Re: Система линейных неравенств и уравнений.
Сообщение01.11.2011, 22:09 
Всем, кто откликнулся большое спасибо!


ИСН в сообщении #498272 писал(а):
Bridgeport в сообщении #498215 писал(а):
за исключинием того, что ничего максимизировать не требуется
А Вы сами потребуйте. Примерно так: "Ну-ка максимизируй мне x". Вот и будет верхняя граница одного интервала...



Kакое хорошо и простое решение, жаль, что я сам не догадался.

 
 
 [ Сообщений: 7 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group