2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Tangents and parallel lines
Сообщение16.10.2011, 00:39 
Аватара пользователя
Let quadrilateral ABCD with intersection points of the diagonals P is inscribed in a circle k. M is the intersection point of the tangent to k through C and a line through P, parallel to BC. N is the intersection point of the tangent to k through D and a line through P, parallel to AD. Prove that CM=DN.

 
 
 
 Re: Tangents and parallel lines
Сообщение16.10.2011, 03:00 
$NDPC$ and $DPCM$ is inscribed ($\angle ACD=\angle PND$ and $\angle BDC=\angle PMC$), so easy to prove that triangle $CDN$ and $CDM$ are equal.

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group