2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Circle and intersecting lines
Сообщение14.08.2011, 00:43 
Аватара пользователя
Let $P$ is a random point chosen internally for the triangle $ABC$. $A_0$ is the intersection point of $AP$ with $BC$. $B_0$ is the intersection point of $BP$ with $AC$. $C_0$ is the intersection point of $CP$ with $AB$. Circumcircle of the triangle $A_{0}B_{0}C_{0}$ intersects the sides $AB$, $BC$, $CA$ respectively at the points $A_1$, $B_1$, $C_1$. Prove that $AA_1$, $BB_1$, $CC_1$ intersects at a common point.

 
 
 
 Re: Circle and intersecting lines
Сообщение15.08.2011, 22:23 
$\frac{AB_1}{AC_1}\frac{AB_0}{AC_0}=1$ , $\frac{BC_1}{BA_1}\frac{BC_0}{BA_0}=1$ ,$\frac{CA_1}{CB_1}\frac{CA_0}{CB_0}=1$

по т. Чевы : $\frac{AB_0BC_0CA_0}{AC_0BA_0CB_0}=1 \Rightarrow \frac{AB_1BC_1CA_1}{AC_1BA_1CB_1}=1 $

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group