Важный момент, который вам как физику (если не ошибаюсь) полезно было бы понимать. Ситуация тут такова. Есть эксперимент Э0, состоящий в том, что студент случайным образом попадает к одному из преподов и сдает либо нет экзамен. Интересуются следующим вопросом - если провести таких испытаний очень большое число, в скольких случаях будет наблюдаться сдача экзамена (какова будет относительная частота появления события

= "сдал"). Для предсказания этой частоты нужно построить адекватную математическую вероятностную модель, а именно, найти подходящие измеримое пространство

и задать отвечающую относительной частоте вероятностную меру

. С построением измеримое пространства проблем нет:
для построения пространства исходов

достаточно выбрать подходящий способ кодировки результатов опытов, например, кодировать преподавателей и результаты сдачи цифрами

, тогда каждому результату опыта будет поставлен в соответсветствие единственным образом исход

, где цифра на первом месте отвечает преподавателю, а на втором - результату сдачи. Далее, поскольку простраствно исходов дикскретно, то в качестве алгебры

можно выбрать максимальную алгебру "множества всех подмножеств" (алгебру, позволяющую описать все возможные фиксируемые в данном эксперименте по наблюдаемым исходам события), т.е., положить

. А вот теперь самое сложное. Нам нужно как-то задать значения вероятностной меры на этой алгебре. Что у нас есть? Только данные по идеальным частотам в отдельных, вообще говоря, никак не связанных между собой экпериментах (они могли производится, например, в разное время): Э1,Э2,Э3, где эксперимент Э1 состоит в том, что для студента из двух преподов случайным образром выбирается определенный, Э2 - прием экзамена преподом 1, Э2 - прем экзамена преподом 2. Как же "перетащить" информацию из этих экспериментов (у каждого из которых своя вероятностная модель) в нашу исходную. Первый прием: руководствуясь здавым смыслом и другими аргументами, постулировать, что в Э0 существуют события, идельная частота которых неотличима от идельной частоты событий из Э0. Например, резонно считать, что событие в Э1 "попасть к преподу 1" будет иметь такую же идеальную частоту, как и событие в Э0 "попасть к переподу 1 и сдать или не сдать". Таким образом, устанавливается соответсвие между событиями в разных моделях (одна модель вкладывается в другую) и это позволяет переносить данные из одной модели на другую.
Второй прием: постулировать, что идеальные частоты событий из Э2 ничем не отличаются от "просеянных" идеальных частот некоторых событий в Э0, где под "просеянной частотой" понимается частота события, рассчитанная по результатам наблюдений, из которых (по какому-то признаку/условию) часть отбрасывается. Например, из здравого смысла, частота события из Э2

= "препод ставит положительную оценку" будет такой же, как и просеянная частота наблюдений события из Э0

= "препод ставит положительную оценку", где отброшены были все наблюдения, в которых не наблюдалось попадания студента к преподу 1. Просеянная частота всякого события

из Э0 (с уловием просеивания Cond) связана с обычной частотой события, как можно сообразить, следующим соотношением:
а значит, с учетом принятого постулата о том, что

) при заданных условиях просеивания, получаем:
В нашем случае условие

задается требованием наступления события

= "попадание к преподу 1", поэтому можно переписать в виде:
Обратите внимание - слева и справа стоят частоты, рассчитанные в разных экпериментальных моделях! Это опять же позволяет данные из одной модели "перекачивать" в другую. В тервере для возможности использования этого чрезвычайно полезного приема и вводится понятие условной вероятности как величины

(как протитипа просеянной частоты), связанной с вероятностями событий соотношенийм

.
Это я все к тому, что при разработке модели всегда используются такие приемы перехода к другим (как правило более простым) моделям, и за корректностью таких переходов надо следить.