2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Элементарное неравенство из школьного учебника
Сообщение26.05.2011, 20:37 
Аватара пользователя
Задача 10.19 из сборника задач по алгебре Алфутовой и Устинова. Доказать неравенство $(a+b+c+d+1)^2\geqslant 4(a^2+b^2+c^2+d^2)$, где $a,b,c,d\in [0,1]$. Попытки решения. Можно перенести левую часть в правую. Справа получится выпуклая функция, максимум которой должен достигаться в угловых точках области определения. Проверить эти точки (в виду симетрии конечно не все) на отрицательность. Но эта задача из школьного задачника. Может есть какое-нибудь элементарное решение?

 
 
 
 Re: Элементарное неравенство из школьного учебника
Сообщение26.05.2011, 21:01 
Если без единицы, ограничений на abcd и с обратным знаком (<=) - это неравенство Коши-Буняковского.

А если исходное, то (a+b+c+d+1)^2>=(a^2+b^2+c^2+d^2+1)^2>=правой части, так как (t+1)^2>=4t.

 
 
 
 Re: Элементарное неравенство из школьного учебника
Сообщение26.05.2011, 21:15 
Аватара пользователя
мат-ламер в сообщении #450537 писал(а):
Может есть какое-нибудь элементарное решение?

Что-то мне кажется, как первый шаг подразумевается раскрытие скобок слева.

 
 
 
 Re: Элементарное неравенство из школьного учебника
Сообщение26.05.2011, 23:58 
Munin в сообщении #450554 писал(а):
Что-то мне кажется, как первый шаг подразумевается раскрытие скобок слева.

Да какие там раскрытия скобок, AM-GM в глаза так и бросается:
$a+b+c+d+1 \ge 2\sqrt{a+b+c+d}$ и дальше в силу ограничений ( $x \ge x^2$ на промежутке от 0 до 1) очень очевидно, что $4(a+b+c+d) \ge 4(a^2+b^2+c^2+d^2)$

 
 
 
 Re: Элементарное неравенство из школьного учебника
Сообщение27.05.2011, 03:23 
Аватара пользователя
Sasha2 в сообщении #450600 писал(а):
Да какие там раскрытия скобок, AM-GM в глаза так и бросается:
$a+b+c+d+1 \ge 2\sqrt{a+b+c+d}$ и дальше в силу ограничений ( $x \ge x^2$ на промежутке от 0 до 1) очень очевидно, что $4(a+b+c+d) \ge 4(a^2+b^2+c^2+d^2)$

Прошу прощения за непонятливость, но хочется знать: какое отношение имеет AM-GM к данному неравенству, иначе говоря, где оно - среднее геометрическое?

 
 
 
 Re: Элементарное неравенство из школьного учебника
Сообщение27.05.2011, 07:37 
JMH в сообщении #450657 писал(а):
Sasha2 в сообщении #450600 писал(а):
Да какие там раскрытия скобок, AM-GM в глаза так и бросается:
$a+b+c+d+1 \ge 2\sqrt{a+b+c+d}$ и дальше в силу ограничений ( $x \ge x^2$ на промежутке от 0 до 1) очень очевидно, что $4(a+b+c+d) \ge 4(a^2+b^2+c^2+d^2)$

Прошу прощения за непонятливость, но хочется знать: какое отношение имеет AM-GM к данному неравенству, иначе говоря, где оно - среднее геометрическое?

Среднее геометрическое 1 и $a+b+c+d$

 
 
 
 Re: Элементарное неравенство из школьного учебника
Сообщение27.05.2011, 07:44 
Аватара пользователя
JMH в сообщении #450657 писал(а):
Прошу прощения за непонятливость, но хочется знать: какое отношение имеет AM-GM к данному неравенству, иначе говоря, где оно - среднее геометрическое?
Вот оно $X+Y \ge 2 \sqrt{XY},$ где $X=a+b+c+d, \;\; Y=1$

 
 
 
 
Сообщение27.05.2011, 14:55 
мат-ламер в сообщении #450537 писал(а):
Задача 10.19 из сборника задач по алгебре Алфутовой и Устинова. Доказать неравенство $(a+b+c+d+1)^2\geqslant 4(a^2+b^2+c^2+d^2)$, где $a,b,c,d\in [0,1]$. Попытки решения. Можно перенести левую часть в правую. Справа получится выпуклая функция, максимум которой должен достигаться в угловых точках области определения. Проверить эти точки (в виду симетрии конечно не все) на отрицательность. Но эта задача из школьного задачника. Может есть какое-нибудь элементарное решение?

Чем же Ваше рассуждение неэлементарно? То, что квадратный трехчлен с положительным коэффициентом при старшей степени переменной достигает на отрезке своего наибольшего значения на концах этого отрезка - вполне очевидно и является примером правильного мышления. Где как не в школе этому мышлению учить? По-моему, всё вполне элементарно!
Здесь, кстати, можно и заклинание про выпуклую функцию ввернуть.

 
 
 
 Re: Элементарное неравенство из школьного учебника
Сообщение27.05.2011, 17:57 
Аватара пользователя
Спасибо всем и отдельно sasha2 за решение.

 
 
 
 Re: Элементарное неравенство из школьного учебника
Сообщение27.05.2011, 18:07 
мат-ламер в сообщении #450853 писал(а):
Спасибо всем и отдельно sasha2 за решение.


Ну вот, "спасибом" обделили:)

 
 
 
 Re: Элементарное неравенство из школьного учебника
Сообщение27.05.2011, 18:24 
Аватара пользователя

(Оффтоп)

alex1910
Лично мне ваше решение больше всех понравилось. Лаконично и просто.

 
 
 [ Сообщений: 11 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group