2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Метод Лагранжа поиска экстремума в гильбертовом пространстве
Сообщение04.05.2011, 16:24 
Подскажите, пожалуйста, правда ли, что если в задаче минимизации присутствуют только ограничения типа неравенства, то задача регулярна (можно выбрать множитель Лагранжа при функционале $\lambda_{0} = 1$), т.к. выполнено линеаризованное условие Слейтера?

 
 
 
 Re: Метод Лагранжа поиска экстремума в гильбертовом пространстве
Сообщение04.05.2011, 19:34 
Аватара пользователя
А что есть линеаризованное условие Слейтера? В задаче с ограничениями в виде неравенств для выполнения теоремы Куна-Таккера требуется выполнение каких-либо условий регулярности - например, выполнение условие Слейтера, либо ограничения должны быть линейными. Нет требования линейной независимости градиентов ограничений (что является условием регулярности для задачи с ограничениями в виде равенств). Поэтому множитель Лагранжа перед целевой функцией не нужен.

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group