2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Операторы с пустым спектром.
Сообщение25.10.2006, 20:50 
Здравствуйте. Начну в лоб =)

Над пространством голоморфных функицй в C^{*} существует непрерывный оператор с пустым спектром (D = d/dz + \alpha / z, \alpha \notin \mathbb{Z}). Пустота спектра проверяется не сложно. То бишь чуть-чуть отойдя от банаховых пространств и беря первый попавшийся простейший оператор (непр.) получаем пустой спектр. Мой научный руководитель утверждает, что у него есть результат, что непр. операторы второго порядка с целыми коэффициентами (целыми в смысле функций) имеют непустой спектр. Хотелось бы узнать, что можно почитать по этому поводу. Также меня интересует литература (на любом, в принципе, языке) по поводу спектров непр. операторов в пр-ве формальных рядов, обрывающихся рядов, многочленов и т.п.

Если я где-то допустил неточность, простите, я совсем недавно стал этим заниматься :)

Заранее спасибо.

 
 
 
 
Сообщение31.10.2006, 13:21 
Видимо я совсем что-то глупое спросил :oops:

 
 
 
 
Сообщение01.11.2006, 09:23 
Аватара пользователя
Ваш вопрос не глупый, а очень узко поставленный. Видимо, на форуме не нашлось специалиста именно по этим вопросам. Мне известно, что спектральная теория дифференциальных операторов - интенсивно развивающаяся наука. В частности, в МГУ по этой теме работает большая группа ученых под руководством академика РАН В.А.Садовничего на мех-мате и под руководством академика РАН В.А. Ильина на ВМиК.Оба этих ученых руководят еженедельно работающими научно-исследовательскими семинарами по спектральной теории. Спектральными вопросами операторов над семействами голоморфных функций много занимаются на мат-мехе ЛГУ. Есть даже написанная специалистами из ЛГУ монография на эту тему. Ну и, конечно, по этой теме море иноязычной литературы.К сожалению, более точных ссылок я Вам дать не могу, поскольку сам этими вропросами не занимался, а только слышал краем уха. И последнее: я не могу взять в толк, почему Ваш научный руководитель, имеющий самостоятельные результаты в спектральной теории, не может посоветовать Вам литературу - не сам же он выдумал для себя всю спектральную теорию?

 
 
 
 
Сообщение02.11.2006, 02:17 
Спасибо вам большое за ответ.

Цитата:
И последнее: я не могу взять в толк, почему Ваш научный руководитель, имеющий самостоятельные результаты в спектральной теории, не может посоветовать Вам литературу - не сам же он выдумал для себя всю спектральную теорию?


В том-то и дело, что дал. Но дал сразу англоязычную статью Стейна, в которой очень много "очевидного". Вот я и подумал, может есть какой-нибудь относительно фундаментальный труд по этой тематике, который поможет прояснить белые пятна.

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group