2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Диофантово уравнение мадам Зарангеш
Сообщение29.04.2011, 17:53 
Sonic86 в сообщении #440009 писал(а):
Множество решений уравнения $x^3-1=z^4-t^2$ тоже бесконечно.

Ещё бы, положим $t=1$.

 
 
 
 Re: Диофантово уравнение мадам Зарангеш
Сообщение29.04.2011, 17:56 
Ну да :lol: я собственно хотел на нетривиальную серию решений указать, ну да ладно.

-- Пт апр 29, 2011 20:59:05 --

Короче так: хочу нетривиальную серию решений, параметризуемую многочленами.

 
 
 
 Re: Диофантово уравнение мадам Зарангеш
Сообщение29.04.2011, 19:13 
Sonic86 в сообщении #440014 писал(а):
Ну да :lol: я собственно хотел на нетривиальную серию решений указать, ну да ладно.

-- Пт апр 29, 2011 20:59:05 --

Короче так: хочу нетривиальную серию решений, параметризуемую многочленами.

Ну, что могу предложить? Например, $x=-48b^4+1$, $z=3b(32b^4-1)$, $t=3b^2(5+3072b^8-192b^4)$.

 
 
 
 Re: Диофантово уравнение мадам Зарангеш
Сообщение29.04.2011, 21:51 
О! Так интереснее :-)

 
 
 [ Сообщений: 19 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group