2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Простые Числа, Очень Простые Числа и Сложные числа
Сообщение25.03.2011, 21:00 
venco в сообщении #427451 писал(а):
Неужели OpenOffice делает такие ошибки?


Похоже это я вбил туда неправильные формулы.

-- Пт мар 25, 2011 21:16:40 --

Всё, я запыхался.
Я не знаю как проверить прав я или нет. Нужна программа которая бы высчитывала Очень Простые и Сложные числа.
Жду ваших сообщений, любых.

 
 
 
 Re: Простые Числа, Очень Простые Числа и Сложные числа
Сообщение25.03.2011, 21:34 
DmitryStarodubov в сообщении #427458 писал(а):
Я не знаю как проверить прав я или нет.
Прав в чём?
Что все простые числа, кроме 2 и 3, не делятся на 2 и 3? Прав.
Что если из всех чисел, не делящихся на 2 и 3, убрать все составные, то останутся только простые? Тоже прав.
Что это что-то новое, о чём стоит трубить на всех форумах? Не прав.

 
 
 
 Re: Простые Числа, Очень Простые Числа и Сложные числа
Сообщение25.03.2011, 21:50 
venco в сообщении #427473 писал(а):
DmitryStarodubov в сообщении #427458 писал(а):
Я не знаю как проверить прав я или нет.
Прав в чём?
Что все простые числа, кроме 2 и 3, не делятся на 2 и 3? Прав.
Что если из всех чисел, не делящихся на 2 и 3, убрать все составные, то останутся только простые? Тоже прав.
Что это что-то новое, о чём стоит трубить на всех форумах? Не прав.


Нет, в том, что последовательность, которую я назвал Очень простыми числами содержит в себе только простые числа, и те числа, которые я назвал Сложными.

И то, что простые числа, это те числа которые остануться от множества чисел, которые я назвал Очень простыми числами, если убрать из них те числа, что я назвал Сложными.

 
 
 
 Re: Простые Числа, Очень Простые Числа и Сложные числа
Сообщение25.03.2011, 22:31 
Аватара пользователя
DmitryStarodubov в сообщении #427484 писал(а):
Нет, в том, что последовательность, которую я назвал Очень простыми числами содержит в себе только простые числа, и те числа, которые я назвал Сложными.

И то, что простые числа, это те числа которые остануться от множества чисел, которые я назвал Очень простыми числами, если убрать из них те числа, что я назвал Сложными.

То есть, новизна состоит в том, что Вы придумали новые названия объектам, которые известны уже тысячи лет? Вам же объяснили уже, что "Очень простые числа" - это натуральные числа, которые не делятся ни на 2, ни на 3 (кроме 1). А "Сложные числа" - это составные числа, которые не делятся ни на 2, ни на 3. И всем совершенно очевидно, что если из некоторого множества натуральных чисел (не содержащего 1) исключить все составные числа, то останутся только простые.

Извините, но Ваши познания в обсуждаемом вопросе соответствуют начальной школе. А форум здесь математический. И Вы хотите убедить профессиональных математиков, что они не знают арифметики на уровне третьего класса? А Вы хотя бы знаете, что такое решето Эратосфена? Оно имеет непосредственное отношение к Вашим "Очень простым числам". Когда я учился в начальной школе, я это знал.

Кстати, Ваши "Очень простые числа" очень давно и довольно часто используются программистами в качестве пробных делителей для быстрого отсеивания большинства составных чисел. Именно потому, что элементы этой последовательности очень быстро вычисляются, и это позволяет сэкономить около 80% времени по сравнению с делением на все малые натуральные числа подряд. Только программисты вычисляют эту последовательность быстрее, чем её можно вычислять по Вашим формулам.

 
 
 
 Re: Простые Числа, Очень Простые Числа и Сложные числа
Сообщение25.03.2011, 23:05 
Someone, так верны мои утверждения или нет?

Утверждения такие:

1)Та числовая последовательность, которую я назвал Очень Простыми Числами содержит в себе только Простые и только Сложные числа.

2) Все Простые числа(за исключением 2 и 3) можно получить удалением множества Сложных чисел(по моей терминологии) из множества Очень Простых Чисел

Верны ли эти мои два утверждения?

Я пришёл сюда не для того чтобы открыть что-то новое.
Мне не с кем было обсудить мои мысли, поэтому я здесь. Понимаете? Не с кем.

 
 
 
 Re: Простые Числа, Очень Простые Числа и Сложные числа
Сообщение25.03.2011, 23:36 
Аватара пользователя
Вам уже раза два или три сказали, что эти утверждения верные, но сильно не новые. Последний раз я Вам об этом сказал в предыдущем сообщении.
Если Вы всего лишь хотели спросить, то писать следовало в раздел "Помогите решить / разобраться (М)". А в этом разделе обсуждаются дискуссионные вопросы, когда автор имеет в виду, что он придумал что-то новое. Поэтому не удивляйтесь отрицательной реакции на Ваши сообщения.

 
 
 
 Re: Простые Числа, Очень Простые Числа и Сложные числа
Сообщение25.03.2011, 23:49 
А у той последовательности, что я обозвал Очень Простыми Числами, у неё есть название? Она зарегистрирована под каким-нибудь именем? Где я могу это узнать?

 
 
 
 Re: Простые Числа, Очень Простые Числа и Сложные числа
Сообщение26.03.2011, 00:18 
DmitryStarodubov в сообщении #427506 писал(а):
Мне не с кем было обсудить мои мысли, поэтому я здесь. Понимаете? Не с кем.
Подождите, в начале темы Вы сказали, что уже обсуждали эти мысли на нескольких форумах. Правда, насколько я понял, Вы не нашли там восхитившихся, и поэтому пришли сюда.
Т.е. Вам нужно не обсуждение, а нечто другое.

 
 
 
 
Сообщение26.03.2011, 00:20 
Аватара пользователя
 i  Полагаю, приведённых объяснений достаточно.
Тема перемещается в специализированное хранилище. Т.е. почти закрывается.


-- 26 мар 2011, 00:22 --

DmitryStarodubov в сообщении #427527 писал(а):
А у той последовательности, что я обозвал Очень Простыми Числами, у неё есть название? Она зарегистрирована под каким-нибудь именем?
DmitryStarodubov в сообщении #427259 писал(а):
Очень Простые Числа
Вот тут самое интересное. Очень Простые Числа (так я их назвал) - это последовательность. Задаётся она двумя чередующимися формулами:

$A = (3*n) + 2$ и $A = (3*k) + 1$, где $n$ - нечётные числа последовательности натуральных чисел, $k$ - чётные.
Если Вы подставите $n=2m+1$ (нечётные) $k=2m$ (чётные), то получите $A=6m+1$ и $A=6m+5$, и про чётность-нечётность можно не думать: $m$ --- просто натуральное число.
Такая последовательность нигде (в разумных хранилищах) не зарегистрирована и не будет зарегистрирована.

 
 
 
 Re: Простые Числа, Очень Простые Числа и Сложные числа
Сообщение26.03.2011, 00:22 
Аватара пользователя
Вам объяснили уже: это последовательность натуральных чисел, не делящихся ни на 2, ни на 3, за исключением 1. Никакого специального названия у неё нет, поскольку ничего особо замечательного в ней нет. Можно поискать её в энциклопедии последовательностей OEIS и найти две последовательности: A007310 (натуральные числа, дающие при делении на 6 остаток 1 или 5; отличается от Вашей тем, что включена 1) и A038179 (результат второго шага решета Эратосфена; отличается тем, что включены простые числа 2 и 3).

DmitryStarodubov в сообщении #427527 писал(а):
Она зарегистрирована под каким-нибудь именем?

Вы хотите взять на неё патент?

 
 
 [ Сообщений: 25 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group