2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Теория игр. 3 разных значения одной матричной игры...?
Сообщение22.03.2011, 02:08 
Матрица такая

$\left(\begin{matrix} 2&1\end{matrix}\right)$

С одной стороны можно сказать, что первый столбец доминирует второй

А значит остается $(2)$ и значение игры $v=2$

С другой стороны в лоб получается по-другому...

$v_1=\max\limits_{i=1}(\min\limits_{j=1,2}a_{ij})=\max\limits_{i=1}1=1$

$v_1=\min\limits_{j=1,2}(\max\limits_{i=1}a_{ij})=\min\limits_{j=1,2}1=1$

Если записать в смешанных стратегиях, то получится:

$2x+1\cdot (1-x)=v$ =>$v=x+1$

$2y=v$ ; $1-y=v$=> $2y=1-y$; $3y=1$; $y=1/3$ => $v=1-y=1-1/3=2/3$

Что-то явно не так, возможно, что это связано с тем, что сейчас поздний вечер)

 
 
 [ 1 сообщение ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group