Цитата:
Что вы имеете под

, где

- некая функция, а

- множество. Ваша функция действует на само множество или на его элементы?
она ни на что не действует, просто функция- она создает новое множество ! никак не влияющее на старое
Ваш пример с целой частью служит док-вом того- что вы меня поняли верно! только в функциях вместо обычных коэффициентов могут стоять мощности!
-- Ср фев 09, 2011 18:48:48 --Цитата:
Вам тут что-то отвечают... Должно быть, сильные телепаты собрались.
А я, бедный, начисто телепатических способностей лишён, поэтому вообще ничего не понимаю. Что за множества, что за функция, откуда и куда она действует? Ничего не указано.
Что Вы спросить-то хотели?
любые множества, обычная функция- только это не функция в обычном смысле этого слова- а является своего рода трансформатором множеств
надеюсь понятно?
