Ну, ежели очень, то ловите...
(КРАЙНЕ МНОГО СИМВОЛОВ)
Поверхность:
![$r = {E^f[A, B] Cos[A], E^f[A, B] Sin[A] Cos[B], E^f[A, B] Sin[A] Sin[B]}$ $r = {E^f[A, B] Cos[A], E^f[A, B] Sin[A] Cos[B], E^f[A, B] Sin[A] Sin[B]}$](https://dxdy-02.korotkov.co.uk/f/9/8/e/98eb35681df20800e803c1e0924221de82.png)
Гауссова кривизна:
![$(E^(-2 f[A,B]) (-(Sin[B] (f^(0,1))[A,B]+Cos[B] Sin[A] (Sin[A]-Cos[A] (f^(1,0))[A,B]))^2 ((f^(0,1))[A,B] (2 Cos[A] (f^(0,1))[A,B]^2+Sin[A] (2 (f^(0,2))[A,B] (f^(1,0))[A,B]+Sin[2 A] (1+(f^(1,0))[A,B]^2)))-2 Sin[A] (Sin[A]^2+(f^(0,1))[A,B]^2) (f^(1,1))[A,B])^2-(Cos[B] (f^(0,1))[A,B]+Sin[A] Sin[B] (-Sin[A]+Cos[A] (f^(1,0))[A,B]))^2 ((f^(0,1))[A,B] (2 Cos[A] (f^(0,1))[A,B]^2+Sin[A] (2 (f^(0,2))[A,B] (f^(1,0))[A,B]+Sin[2 A] (1+(f^(1,0))[A,B]^2)))-2 Sin[A] (Sin[A]^2+(f^(0,1))[A,B]^2) (f^(1,1))[A,B])^2-4 Sin[A]^2 (Cos[A]+Sin[A] (f^(1,0))[A,B])^2 ((f^(0,1))[A,B] (Cos[A] (f^(0,1))[A,B]^2+Sin[A] ((f^(0,2))[A,B] (f^(1,0))[A,B]+Cos[A] Sin[A] (1+(f^(1,0))[A,B]^2)))-Sin[A] (Sin[A]^2+(f^(0,1))[A,B]^2) (f^(1,1))[A,B])^2-2 Sin[A]^2 (Cos[A]+Sin[A] (f^(1,0))[A,B])^2 (2 (f^(0,1))[A,B]^2 (-Sin[A]+Cos[A] (f^(1,0))[A,B])+Sin[A] (-1+Cos[2 A]+2 (f^(0,2))[A,B]+Sin[2 A] (f^(1,0))[A,B]) (1+(f^(1,0))[A,B]^2)-2 Sin[A] (f^(0,1))[A,B] (f^(1,0))[A,B] (f^(1,1))[A,B]) (Sin[A] (f^(0,1))[A,B] (f^(1,0))[A,B] (f^(1,1))[A,B]+Sin[A]^3 (1+(f^(1,0))[A,B]^2-(f^(2,0))[A,B])+(f^(0,1))[A,B]^2 (Sin[A]-Cos[A] (f^(1,0))[A,B]-Sin[A] (f^(2,0))[A,B]))+2 (Sin[B] (f^(0,1))[A,B]+Cos[B] Sin[A] (Sin[A]-Cos[A] (f^(1,0))[A,B]))^2 (2 (f^(0,1))[A,B]^2 (Sin[A]-Cos[A] (f^(1,0))[A,B])-Sin[A] (-1+Cos[2 A]+2 (f^(0,2))[A,B]+Sin[2 A] (f^(1,0))[A,B]) (1+(f^(1,0))[A,B]^2)+2 Sin[A] (f^(0,1))[A,B] (f^(1,0))[A,B] (f^(1,1))[A,B]) (Sin[A] (f^(0,1))[A,B] (f^(1,0))[A,B] (f^(1,1))[A,B]+Sin[A]^3 (1+(f^(1,0))[A,B]^2-(f^(2,0))[A,B])+(f^(0,1))[A,B]^2 (Sin[A]-Cos[A] (f^(1,0))[A,B]-Sin[A] (f^(2,0))[A,B]))+2 (Cos[B] (f^(0,1))[A,B]+Sin[A] Sin[B] (-Sin[A]+Cos[A] (f^(1,0))[A,B]))^2 (2 (f^(0,1))[A,B]^2 (Sin[A]-Cos[A] (f^(1,0))[A,B])-Sin[A] (-1+Cos[2 A]+2 (f^(0,2))[A,B]+Sin[2 A] (f^(1,0))[A,B]) (1+(f^(1,0))[A,B]^2)+2 Sin[A] (f^(0,1))[A,B] (f^(1,0))[A,B] (f^(1,1))[A,B]) (Sin[A] (f^(0,1))[A,B] (f^(1,0))[A,B] (f^(1,1))[A,B]+Sin[A]^3 (1+(f^(1,0))[A,B]^2-(f^(2,0))[A,B])+(f^(0,1))[A,B]^2 (Sin[A]-Cos[A] (f^(1,0))[A,B]-Sin[A] (f^(2,0))[A,B]))))/(4 ((f^(0,1))[A,B]^2+Sin[A]^2 (1+(f^(1,0))[A,B]^2))^4)$ $(E^(-2 f[A,B]) (-(Sin[B] (f^(0,1))[A,B]+Cos[B] Sin[A] (Sin[A]-Cos[A] (f^(1,0))[A,B]))^2 ((f^(0,1))[A,B] (2 Cos[A] (f^(0,1))[A,B]^2+Sin[A] (2 (f^(0,2))[A,B] (f^(1,0))[A,B]+Sin[2 A] (1+(f^(1,0))[A,B]^2)))-2 Sin[A] (Sin[A]^2+(f^(0,1))[A,B]^2) (f^(1,1))[A,B])^2-(Cos[B] (f^(0,1))[A,B]+Sin[A] Sin[B] (-Sin[A]+Cos[A] (f^(1,0))[A,B]))^2 ((f^(0,1))[A,B] (2 Cos[A] (f^(0,1))[A,B]^2+Sin[A] (2 (f^(0,2))[A,B] (f^(1,0))[A,B]+Sin[2 A] (1+(f^(1,0))[A,B]^2)))-2 Sin[A] (Sin[A]^2+(f^(0,1))[A,B]^2) (f^(1,1))[A,B])^2-4 Sin[A]^2 (Cos[A]+Sin[A] (f^(1,0))[A,B])^2 ((f^(0,1))[A,B] (Cos[A] (f^(0,1))[A,B]^2+Sin[A] ((f^(0,2))[A,B] (f^(1,0))[A,B]+Cos[A] Sin[A] (1+(f^(1,0))[A,B]^2)))-Sin[A] (Sin[A]^2+(f^(0,1))[A,B]^2) (f^(1,1))[A,B])^2-2 Sin[A]^2 (Cos[A]+Sin[A] (f^(1,0))[A,B])^2 (2 (f^(0,1))[A,B]^2 (-Sin[A]+Cos[A] (f^(1,0))[A,B])+Sin[A] (-1+Cos[2 A]+2 (f^(0,2))[A,B]+Sin[2 A] (f^(1,0))[A,B]) (1+(f^(1,0))[A,B]^2)-2 Sin[A] (f^(0,1))[A,B] (f^(1,0))[A,B] (f^(1,1))[A,B]) (Sin[A] (f^(0,1))[A,B] (f^(1,0))[A,B] (f^(1,1))[A,B]+Sin[A]^3 (1+(f^(1,0))[A,B]^2-(f^(2,0))[A,B])+(f^(0,1))[A,B]^2 (Sin[A]-Cos[A] (f^(1,0))[A,B]-Sin[A] (f^(2,0))[A,B]))+2 (Sin[B] (f^(0,1))[A,B]+Cos[B] Sin[A] (Sin[A]-Cos[A] (f^(1,0))[A,B]))^2 (2 (f^(0,1))[A,B]^2 (Sin[A]-Cos[A] (f^(1,0))[A,B])-Sin[A] (-1+Cos[2 A]+2 (f^(0,2))[A,B]+Sin[2 A] (f^(1,0))[A,B]) (1+(f^(1,0))[A,B]^2)+2 Sin[A] (f^(0,1))[A,B] (f^(1,0))[A,B] (f^(1,1))[A,B]) (Sin[A] (f^(0,1))[A,B] (f^(1,0))[A,B] (f^(1,1))[A,B]+Sin[A]^3 (1+(f^(1,0))[A,B]^2-(f^(2,0))[A,B])+(f^(0,1))[A,B]^2 (Sin[A]-Cos[A] (f^(1,0))[A,B]-Sin[A] (f^(2,0))[A,B]))+2 (Cos[B] (f^(0,1))[A,B]+Sin[A] Sin[B] (-Sin[A]+Cos[A] (f^(1,0))[A,B]))^2 (2 (f^(0,1))[A,B]^2 (Sin[A]-Cos[A] (f^(1,0))[A,B])-Sin[A] (-1+Cos[2 A]+2 (f^(0,2))[A,B]+Sin[2 A] (f^(1,0))[A,B]) (1+(f^(1,0))[A,B]^2)+2 Sin[A] (f^(0,1))[A,B] (f^(1,0))[A,B] (f^(1,1))[A,B]) (Sin[A] (f^(0,1))[A,B] (f^(1,0))[A,B] (f^(1,1))[A,B]+Sin[A]^3 (1+(f^(1,0))[A,B]^2-(f^(2,0))[A,B])+(f^(0,1))[A,B]^2 (Sin[A]-Cos[A] (f^(1,0))[A,B]-Sin[A] (f^(2,0))[A,B]))))/(4 ((f^(0,1))[A,B]^2+Sin[A]^2 (1+(f^(1,0))[A,B]^2))^4)$](https://dxdy-03.korotkov.co.uk/f/6/8/2/682f59a57b9db7268b853fc2d186422a82.png)
При копипасте покорежилось слегка, но ни сил ни желания править нет. Главное показано - практическая бесполезность сего громоздкого выражения.
А может Вас частный случай
![$\[r\left( \theta \right)\]$ $\[r\left( \theta \right)\]$](https://dxdy-02.korotkov.co.uk/f/5/d/f/5dfea859273804bfa1ed7a470e7013b582.png)
удовлетворит? Формула там гораздо приятнее:
![$\[e^{ - 2f} \frac{{\left( {1 - f'\left( \theta \right)\operatorname{ctg} \theta } \right)\left( {1 + f'\left( \theta \right)^2 - f''\left( \theta \right)} \right)}}{{\left( {1 + f'\left( \theta \right)^2 } \right)^2 }}\]$ $\[e^{ - 2f} \frac{{\left( {1 - f'\left( \theta \right)\operatorname{ctg} \theta } \right)\left( {1 + f'\left( \theta \right)^2 - f''\left( \theta \right)} \right)}}{{\left( {1 + f'\left( \theta \right)^2 } \right)^2 }}\]$](https://dxdy-02.korotkov.co.uk/f/d/0/a/d0a25eb8ef0f0cd54a0e38e7bd87a94282.png)
, здесь также принято
![$\[f \equiv \ln r\left( \theta \right)
\]$ $\[f \equiv \ln r\left( \theta \right)
\]$](https://dxdy-04.korotkov.co.uk/f/b/a/d/bad5a59466382b6a944cb1d5087b191682.png)