2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Помогите решить диффур(первого порядка)
Сообщение27.01.2011, 17:48 
Именно так и звучит. Извените что запутал, задание у подруге было, я краем глаза увидел но не все запомнил. И как такое решить подскажите пожалуйста. Начальное условие $y(0)=1$.

 
 
 
 Re: Помогите решить диффур(первого порядка)
Сообщение27.01.2011, 18:01 
Аватара пользователя
y = ux, y' = u'x + u

 
 
 
 Re: Помогите решить диффур(первого порядка)
Сообщение27.01.2011, 20:34 
Представьте решение в виде ряда Тэйлора:$y(x)=y(0)+\frac {y'(0)}{1!}x+\frac {y,значения функции и ее производных в нуле находятся с помощью диф.уравнения и начального условия.Таким образом $y(0)=1,y'(0)=2$ и т.д.

 
 
 
 Re: Помогите решить диффур(первого порядка)
Сообщение27.01.2011, 22:31 
спасибо, решил =)

 
 
 [ Сообщений: 19 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group