2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 No. of real roots.
Сообщение08.01.2011, 13:53 


30/11/10
227
Let $f(x)$ be a polynomial of degree $n$, an odd positive integer, and has monotonic behaviour , then the number of real roots of the equation
$f(x)+f(2x)+......+f(nx) = \frac{1}{2} n(n+1)$ is equal to

 Профиль  
                  
 
 Re: No. of real roots.
Сообщение08.01.2011, 14:41 
Заслуженный участник


03/01/09
1701
москва
$f'(x)\geqslant 0$ (or $f'(x)\leqslant 0$)for all $x$,because f(x) is monotonous,let $P(x)=f(x)+f(2x)+\dots +f(nx)-\frac 12n(n+1)$,obviously $P'(x)\geqslant 0,x\in (-\infty,+\infty)$,then $P(x)$ is monotonous and has odd degree n and thus has only one real root.

 Профиль  
                  
 
 Re: No. of real roots.
Сообщение08.01.2011, 16:03 


30/11/10
227
mihiv Thanks for nice explanation.
(I have also got 1 solution. using example.)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: lel0lel


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group