2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Inequality
Сообщение29.12.2010, 00:58 
if$x >y>0$
prove that
$y(x-y)(x-3)\geq -1$

 
 
 
 Re: Inequality
Сообщение29.12.2010, 01:46 
If $x\ge 3$ left side is positive.
If $x<3$, then $x(x-y)\le \frac{x^2}{4}$, therefore
$x(x-y)(x-3)\ge f(x)=\frac{x^3-3x^2}{4}$. Obviosly minimal value $f(x)=f(2)=-1.$

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group