2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Greatest value.
Сообщение27.12.2010, 20:01 
find The greatest value of $(a-x)(b-y)(c-z)(ax+by+cz)$. where $a,b,c$ are known positive quantities. and $(a-x),(b-y)$ and $(c-z)$ are also positive.

 
 
 
 Re: Greatest value.
Сообщение28.12.2010, 07:44 
А Вы не могли бы указать из какой олимпиады эти задачи?

 
 
 
 Re: Greatest value.
Сообщение28.12.2010, 08:34 
actually this is from text-book of Intermediate.

I have seen that this is a tough question. so I have post here.

 
 
 
 Re: Greatest value.
Сообщение29.12.2010, 07:28 
Аватара пользователя
$$LRS= \frac{1}{abc} (a^2-ax)(b^2-bx)(c^2-cx)(ax+by+cz) \leq \frac{1}{abc} \frac{\left(a^2+b^2+c^2\right)^4}{256} $$
Знак "=" $$\iff x=\frac{3a^2-b^2-c^2}{4a}, y=\frac{3b^2-a^2-c^2}{4b}, z= \frac{3c^2-a^2-b^2}{4c}$$

 
 
 
 Re: Greatest value.
Сообщение29.12.2010, 08:26 
Thanks daogiauvang for nice solution.

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group