2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 как вывести принцип индукции из аксиомы о минимальном элем
Сообщение17.09.2006, 12:53 
Аватара пользователя
Как вывести принцип математической индукции из аксиомы, что любое подмножество множества натуральных чисел содержит минимальный элемент?

 
 
 
 Рассмотреть дополнение
Сообщение17.09.2006, 17:47 
Dims писал(а):
Как вывести принцип математической индукции из аксиомы, что любое подмножество множества натуральных чисел содержит минимальный элемент?

Видимо, подразумевалось, что любое непустое подмножество множества натуральных чисел содержит минимальный элемент. Будем считать, что множество натуральных чисел $\mathbb N$ начинается с единицы. Хотим доказать, что если $A\subset{\mathbb N}, $1\in A$ и \forall n\in{\mathbb N}\ (n\in A\ \Rightarrow\ n+1\in A), то $A={\mathbb N}$.

Доказательство. Рассуждая от противного, предположим, что множество {\mathbb N}\setminus A$ непусто. Тогда в нём существует минимальный элемент, который обозначим через $m$. Возможны два случая: $m=1$ или $m>1$. В каждом случае сразу получается противоречие.

 
 
 
 
Сообщение17.09.2006, 21:35 
Аватара пользователя
Не понял, какое противоречие получается при m>1 ?

 
 
 
 
Сообщение17.09.2006, 22:16 
Аватара пользователя
Число 1 не может лежать в {\mathbb N}\setminus A$, ведь, по условию,
$1\in A$.Поэтому $m>1$ и тогда число m-1 обязательно лежит в А, поскольку оно меньше минимального элемента из {\mathbb N}\setminus A$. Но тогда и число m=(m-1)+1 тоже должно лежать в А - противоречие.

 
 
 
 
Сообщение18.09.2006, 03:58 
Аватара пользователя
Понятно.

А что такое "минимальный элемент"? Это такой элемент, для которого любой элемент больше либо равен ему?

А что такое "любой элемент"? Нет ли в этом понятии индукции? Оно как-то определяется?

 
 
 
 
Сообщение18.09.2006, 04:49 
Аватара пользователя
;evil:
Dims писал(а):
А что такое "минимальный элемент"? Это такой элемент, для которого любой элемент больше либо равен ему?

Да.

Dims писал(а):
А что такое "любой элемент"? Нет ли в этом понятии индукции? Оно как-то определяется?

Теоретико-множественно. Всякое (или, по крайней мере, большинство) определение натурального ряда основывается на теории множеств, и существование и всеобщность оттуда наследуются. То есть индукции здесь нет.

 
 
 
 
Сообщение18.09.2006, 12:30 
Аватара пользователя
Понятно, что из теории множеств. Но там-то как-то понятие "любой" определяется?

Интуитивно кажется, что утверждать "любой" насчёт элементов бесконечного множества без какой-либо индукции нельзя.

 
 
 
 
Сообщение18.09.2006, 21:03 
Аватара пользователя
Dims писал(а):
Понятно, что из теории множеств. Но там-то как-то понятие "любой" определяется?

Интуитивно кажется, что утверждать "любой" насчёт элементов бесконечного множества без какой-либо индукции нельзя.

То есть Вы отрицаете возможность проверки правильности высказываний типа: "квадрат любого вещественного числа неотрицателен" - ведь для этого индукция по натуральному параметру неприменима в принципе?

 
 
 
 
Сообщение18.09.2006, 22:22 
Аватара пользователя
Нет, мне кажется, что смысл слова "любой" может быть ограничен, то есть, у него как бы может быть некотороя своя предельная мощность.

 
 
 
 
Сообщение19.09.2006, 06:25 
Аватара пользователя
Эти ограничения содержатся уже в самой канторовской теории множеств, где, скажем, запрещено образование "слишком больших" множеств для устранения парадоксов типа парадокса брадобрея. Но лучше пусть Вам об этом расскажут специалисты мо метаматематике, к которым меня отнести нельзя.

 
 
 
 
Сообщение19.09.2006, 20:49 
Аватара пользователя
Что-то я не пойму. "Любой" - это квантор всеобщности. Искать его нужно в математической логике, а не в теории множеств. К математической индукции он отношения не имеет.

 
 
 
 
Сообщение20.09.2006, 00:57 
Аватара пользователя
Ну да, квантор всеобщности. У него есть определение, или он определятеся только через метаязык/аксиоматически?

 
 
 
 
Сообщение20.09.2006, 08:35 
Аватара пользователя
Dims писал(а):
Ну да, квантор всеобщности. У него есть определение, или он определятеся только через метаязык/аксиоматически?

Почитайте об этом,например, здесь: http: //lib.mexmat.ru/books/63,
здесь: http://lib.mexmat.ru/books/1419
здесь: http://lib.mexmat.ru/books/1407
или здесь: http://lib.mexmat.ru/books/61.
Последнюю из книг Вы совершенно законно можете скачать здесь: http://www.mccme.ru/free-books/

 
 
 [ Сообщений: 13 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group