2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В раздел Пургаторий будут перемещены спорные темы (преимущественно псевдонаучного характера), относительно которых администрация приняла решение о нецелесообразности продолжения дискуссии.
Причинами такого решения могут быть, в частности: безграмотность, бессодержательность или псевдонаучный характер темы, нарушение автором принципов ведения дискуссии, принятых на форуме.
Права на добавление сообщений имеют только Модераторы и Заслуженные участники форума.



Начать новую тему Ответить на тему
 
 О мощности множества простых чисел
Сообщение04.10.2010, 19:08 


01/03/08
60
Каждому элементу множества всех подмножеств множества простых чисел можно поставить в соответствие наруральное число, состоящее из неповторяющихся просых сомножителей. Поскольку множество таких чисел является подмножеством множества натуральных чисел, то, в соответствии с теоремой Кантора, мощность множества простых чисел оказывается меньше мощности счетного множества!

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение04.10.2010, 19:15 
Заслуженный участник


04/05/09
4587
Metaphysic в сообщении #359127 писал(а):
Каждому элементу множества всех подмножеств множества простых чисел можно поставить в соответствие наруральное число, состоящее из неповторяющихся просых сомножителей.
Вы пропустили слово "конечных" перед словом "подмножеств".

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение04.10.2010, 20:26 


01/03/08
60
Уважаемый venco! Не могли бы Вы определить, что такое конечное число. Может быть это любой элемент потенциально бесконечной последовательности {1, 2, ...}?

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение04.10.2010, 20:36 
Заслуженный участник
Аватара пользователя


07/01/10
2015
Конечное -- значит меньше некоторого натурального числа.

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение04.10.2010, 20:49 
Заслуженный участник


04/05/09
4587
Metaphysic в сообщении #359169 писал(а):
Уважаемый venco! Не могли бы Вы определить, что такое конечное число. Может быть это любой элемент потенциально бесконечной последовательности {1, 2, ...}?
Все натуральные числа - конечные. Множество же может быть бесконечным. Это значит, что количество элементов этого множества больше любого натурального числа.
Так вот, множество всех конечных подмножеств натуральных (целых, простых) чисел - счётно. Множество всех (включая бесконечные) подмножеств натуральных (целых, простых) чисел - несчётно.

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение04.10.2010, 22:10 


01/03/08
60
Уважаемый venco!
Я попросил Вас определить,что такое конечное число. Вы же провозгласили, как некую аксиому, что
Цитата:
Все натуральные числа - конечные.
Эта аксиома, однако, никак не следует из аксиом Пеано, определяющих множество натуральных чисел.

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение04.10.2010, 22:33 
Заслуженный участник


04/05/09
4587
Это не аксиома, а определение.
Бесконечность множества - тоже определение.

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение04.10.2010, 22:37 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
Опять ниспровергатель пожаловал по наши души.

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение04.10.2010, 22:51 


01/03/08
60
Цитата:
venco:
Это не аксиома, а определение.

Определение натурального ряда -- это аксиомы Пеано. Можете Вы, исходя из них, доказать, что все натуральные числа суть числа конечные.

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение04.10.2010, 23:01 
Заслуженный участник


04/05/09
4587
Metaphysic в сообщении #359232 писал(а):
Цитата:
venco:
Это не аксиома, а определение.

Определение натурального ряда -- это аксиомы Пеано. Можете Вы, исходя из них, доказать, что все натуральные числа суть числа конечные.
Я неточно высказался.
Это прямое следствие определения понятия "конечности" (см. выше что написал caxap).
Для любого натурального числа $n$ есть натуральное число $n+1$ (аксиомы Пеано), причём $n<n+1$, значит (из определения конечности) $n$ - конечно.

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение04.10.2010, 23:08 
Заслуженный участник
Аватара пользователя


04/04/09
1351
ИСН в сообщении #359228 писал(а):
Опять ниспровергатель пожаловал по наши души.

Metaphysic в сообщении #359127 писал(а):
Поскольку множество таких чисел является подмножеством множества натуральных чисел, то,... мощность множества простых чисел оказывается меньше мощности счетного множества!

Мощность подмножества множества натуральных чисел может быть равна мощности множества натуральных чисел. Например, мощность множества всех чётных натуральных чисел равна мощности множества натуральных чисел. Вам бы слегка подучиться и всё будет хорошо.

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение05.10.2010, 00:12 


01/03/08
60
Цитата:
Виктор Викторов
Мощность подмножества множества натуральных чисел может быть равна мощности множества натуральных чисел. Например, мощность множества всех чётных натуральных чисел равна мощности множества натуральных чисел. Вам бы слегка подучиться и всё будет хорошо.

Из того что множество "чисел без квадратов" является подмножеством множества натуральных чисел следует, что мощность этого множества не превосходит мощности счетного множества. Этого достаточно, чтобы утверждать, что мощность множество простых чисел меньше мощности множества натуральных чисел.
Цитата:
Опять ниспровергатель пожаловал по наши души.

Не цитируйте, пожалуйста, обскурантистские замечания.

Цитата:
Вам бы слегка подучиться и всё будет хорошо.

Если Вы поняли, о чем я пишу, то могли бы и извиниться.

-- Вт окт 05, 2010 01:19:04 --

Цитата:
venco:
Это прямое следствие определения понятия "конечности" (см. выше что написал caxap).

Цитата:
сахар:
Конечное -- значит меньше некоторого натурального числа.

Какого натурального числа? Конечного же? Так "конечность" не определяют!

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение05.10.2010, 01:28 
Заслуженный участник
Аватара пользователя


04/04/09
1351
Metaphysic в сообщении #359259 писал(а):
Цитата:
Вам бы слегка подучиться и всё будет хорошо.

Если Вы поняли, о чем я пишу, то могли бы и извиниться.

Могу и извиниться. Извините. Прощайте.

 Профиль  
                  
 
 Re: О мощности множества простых чисел
Сообщение05.10.2010, 01:40 
Админ форума
Аватара пользователя


19/03/10
8952
На мой взгляд, достаточно. Переехали в Пургаторий.
Если у кого-нибудь из ЗУ возникнет желание продолжить, пишите в ЛС.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 14 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group