После того, как Вы построили допустимую область (треугольник) находите градиент целевой функции (направление роста функции), это будет вектор

. Затем, добавляете его на рисунок. После этого рассматриваете множества точек

, такие, что

, где

- некоторая константа. Все эти точки (для фиксированного

) будут прямыми перпендикулярными вектору градиенту - то есть, их можно просто рисовать на графике, не рассматривая конкретные значения

.
Визуально, можно вообразить, что прямая перпеникулярная вектору градиенту просто скользит по нему. Теперь двигайте эту прямую в направлении вектора градиента до тех пор, пока эта прямая не будет касаться (заметьте не пересекать, а именно касаться) допустимого множества, так, что дальнейшее смещение приведёт к тому, что прямая не будет ни пересекать, ни касаться допустимого множества. Эта точка касания (может и не одна) и будет решением задачи.
Однако, если не решать графически, то решение можно найти вычисляя значения функции в каждой вершине треугольника. Решением будет та вершина, где значение целевой функции максимально.