2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 63, 64, 65, 66, 67, 68, 69 ... 240  След.
 
 Re: Тема для странных вопросов
Сообщение10.12.2010, 16:50 
Аватара пользователя
kolas в сообщении #385702 писал(а):
печаль ~ 1/солнце

Это будет частота.

 
 
 
 Re: Тема для странных вопросов
Сообщение10.12.2010, 19:32 
Аватара пользователя
Xenia1996 в сообщении #385695 писал(а):
Полагаю, что для каждого момента времени $t$ количество печали равно алгебраической сумме всех положительных и отрицательных ощущений, пережитых данным индивидом от его зачатия до момента $t$, умноженной на минус единичку.

Это для каких-то роботов... Которые мыслят дискретно, и, вероятно, никогда печали не знают.

Тут подойдёт что-то типа локального минимума функции настроения от времени.

Xenia1996 в сообщении #385695 писал(а):
Сын Целковского...

...Оговорка?

 
 
 
 Re: Тема для странных вопросов
Сообщение10.12.2010, 20:20 
Аватара пользователя
Mathusic в сообщении #385856 писал(а):
Это для каких-то роботов... Которые мыслят дискретно, и, вероятно, никогда печали не знают.

Так ведь связь сератонина и хорошего настроения никто не отменял.

 
 
 
 Re: Тема для странных вопросов
Сообщение10.12.2010, 21:10 
kolas в сообщении #385702 писал(а):
Мне кажется в эту формулу должно входить количество солнечной энергии попадающей на человека. печаль ~ 1/солнце
Какая-то она не соответствующая опыту. Вот я, значит, ночью должен разорваться от неопределённой печали! :o

А какова формула печати тогда? :?

 
 
 
 Re: Тема для странных вопросов
Сообщение10.12.2010, 21:22 
Аватара пользователя
whiterussian в сообщении #385885 писал(а):
Mathusic в сообщении #385856 писал(а):
Это для каких-то роботов... Которые мыслят дискретно, и, вероятно, никогда печали не знают.

Так ведь связь сератонина и хорошего настроения никто не отменял.

Хмм... Я обратного вроде и не утверждал :-) Не понял ваш ответ.

 
 
 
 Re: Тема для странных вопросов
Сообщение10.12.2010, 22:01 
Почему в Англии стали строить железную дорогу раньше, чем изобрели паровоз?

 
 
 
 Re: Тема для странных вопросов
Сообщение10.12.2010, 22:14 
Аватара пользователя
Чуяли, что пригодится...

 
 
 
 Re: Тема для странных вопросов
Сообщение11.12.2010, 01:24 
Аватара пользователя
sergey83 в сообщении #385930 писал(а):
Почему в Англии стали строить железную дорогу раньше, чем изобрели паровоз?
Коняке легче тащить вагончик по узкому, но ровному железнодорожному полотну, чем по широким грунтовым дорогам, грязным, в колдобинах (таким, как за внешностью МКАД), да ещё и с ГАИшниками!
А водителю-гастерарбайтеру не нужно знать Город - с рельсов не съедешь!

 
 
 
 Re: Тема для странных вопросов
Сообщение12.12.2010, 10:33 
Аватара пользователя
arseniiv в сообщении #385478 писал(а):
Какова формула печали?

После совокупления животное печально (Аристотель)
Во многой мудрости много печали (Екклезиаст)

Н-да, не сойдёт за формулы...

 
 
 
 Re: Тема для странных вопросов
Сообщение12.12.2010, 14:50 
Аватара пользователя
arseniiv в сообщении #385478 писал(а):
Какова формула печали?
Где бы найти дневники лейб-лекаря Её Высочества Несмеяны?

 
 
 
 Re: Тема для странных вопросов
Сообщение13.12.2010, 14:08 
Аватара пользователя
Что сложнее: шахматы или математика?

 
 
 
 Re: Тема для странных вопросов
Сообщение13.12.2010, 14:10 
Профессор Снэйп в сообщении #386816 писал(а):
Что сложнее: шахматы или математика?

Шахматные задачи являются частным случаем математических задач.

 
 
 
 Re: Тема для странных вопросов
Сообщение13.12.2010, 16:27 
Аватара пользователя
Профессор Снэйп в сообщении #386816 писал(а):
Что сложнее: шахматы или математика?

Что вкуснее: арбуз или свиной хрящик?

Xenia1996
Речь, разумеется, не о шахматных задачах, а о шахматах. Шахматы как игра - существенно другая деятельность, чем математика.

 
 
 
 Re: Тема для странных вопросов
Сообщение13.12.2010, 17:02 
arseniiv в сообщении #385907 писал(а):
А какова формула печати тогда? :?
:D ?

 
 
 
 Re: Тема для странных вопросов
Сообщение13.12.2010, 17:09 
Munin в сообщении #386864 писал(а):
Xenia1996
Речь, разумеется, не о шахматных задачах, а о шахматах. Шахматы как игра - существенно другая деятельность, чем математика.

Категорически не согласна.
Сама играю в шахматы, и неоднократно убеждалась, что шахматная игра - не что иное, как цепочка следующих друг за дружкой шахматных задач: "Вот как здесь в четыре хода выиграть слона?", "А как после этого захватить контроль над вертикалью $e$, дабы получить возможность доминирования на королевском фланге?"...Про эндшпиль я уже вообще не заикаюсь - чистая математика!

В принципе, шахматная игра - и есть математическая задача (встречаются же на олимпиадах задачи про игры, да и в теории игр - тоже), просто человеческая цивилизация пока её не решила (но рука - то тянется).

 
 
 [ Сообщений: 3599 ]  На страницу Пред.  1 ... 63, 64, 65, 66, 67, 68, 69 ... 240  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group