2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Задача про лампочки (стох.процессы)
Сообщение24.04.2010, 17:08 
Здравствуйте!
Моя задача:
Как только лампочка перегорает, ее сразу заменяют. Сроки службы лампочек - независимые одинаково распределенные случ.величины с функцией распределения $F$. Пусть $X_i$ - срок службы $i$-ой лампочки.
Найти распределение количества замен лампочек ко времени $t$ и распределение времени замены $n$-ой лампочки.

У меня получилось, что функция распределения времени замены $n$-ой лампочки: $F_n$, т.е. функция распределения суммы НОРСВ $X_i$.
Чтобы найти распределение количества замен лампочек ко времени $t$, $N(t)$, я рассматриваю $P(N(t)=n)$ и получаю $P(N(t)=n)=F_n-F_{n+1}$.
Распределение количества замен дискретно, поэтому достаточно найти только эту вероятность.

Правильны ли мои рассуждения?

 
 
 
 Re: Задача про лампочки (стох.процессы)
Сообщение24.04.2010, 18:17 
Vika_L в сообщении #312792 писал(а):
У меня получилось, что функция распределения времени замены $n$-ой лампочки: $F_n$, т.е. функция распределения суммы НОРСВ $X_i$.
Правильно, если под $F_n$ имеется ввиду $n$-кратная свёртка (конволюция) функции $F$.
Vika_L в сообщении #312792 писал(а):
Чтобы найти распределение количества замен лампочек ко времени $t$, $N(t)$, я рассматриваю $P(N(t)=n)$ и получаю $P(N(t)=n)=F_n-F_{n+1}$.
Правильно, только пишите как $P(N(t)=n)=F_n(t)-F_{n+1}(t)$.

 
 
 
 Re: Задача про лампочки (стох.процессы)
Сообщение24.04.2010, 18:34 
Спасибо!

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group