2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 вопрос устойчивости и сходимости.
Сообщение06.04.2010, 19:04 
Добрый день! Помогите пожалуйста.
Пусть есть некоторый математический метод (описывающий некоторую физическую задачу), абстрактно сформулированный в форме некоторого условия, например, условной минимизации некоторой функции (функционала): $R_0=Arg[min(\xi(R))], R\in [R_1,R_2]$
Пусть так же заданная функция (функционал) $\xi(R)$ представима в виде суммы детерминированной и стохастической компонент. Пусть имеется плотность распределения вероятности $w(\xi(R))$. Мне необходимо оценить устойчивость и сходимость построенного метода. Насколько я знаю устойчивость и сходимость определяет тот алгоритм (из великого их многообразия), который применяется для решения задачи оптимизации. А вот можно ли провести анализ устойчивости и сходимости "в общем виде", т.е. ДО использования численных методов, этого я увы не знаю. Подскажите как это провести в общем виде, если это можно сделать аналитически (пусть не полностью, но хоть до какого-то этапа) и что для этого нужно. может есть какая-то доступная литература (сам по образованию физик, в математике разбираюсь, но не на сверх высоком уровне((( )

 
 
 
 Re: вопрос устойчивости и сходимости.
Сообщение12.04.2010, 17:13 
Аватара пользователя
См. Поляк Б.Т. Введение в оптимизацию. Гл.4.

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group