2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Решение системы неоднородных ОДУ
Сообщение04.03.2010, 20:55 
Здравствуйте!

Есть система неоднородных ОДУ:

$\mathbf{\dot{r}}=\mathbf{a}\,\lvert\mathbf{r}\rvert+\mathbf{b},\quad\mathbf{a},\,\mathbf{b},\,\mathbf{r}\in\mathbb{R}^{n}$.

В случае $\mathbf{b}\equiv 0$, что делать, понятно. Представляем:

$\dot{r}_{j}=a_{j}\left\lbrace\sum r^{2}_{i}\right\rbrace^{1/2}$,

а $r_{i}$ находим из решения
$\cfrac{\dot{r}_{i}}{\dot{r}_{j}}=\cfrac{a_{i}}{a_{j}}$,

и т.д. до получения решения.

Случай $\mathbf{a}=\lambda\,\mathbf{b}$ - затруднения также не вызывает - решение аналогично приведённому.

А вот что делать в общем случае? Подскажите, пожалуйста!

P.S.
Под конец рабочего дня совсем тормоза напали!

С уважением,
G^a.

 
 
 
 Re: Решение системы неоднородных ОДУ
Сообщение05.03.2010, 08:05 
Аналогично:$$\dfrac {\dot {r}_i-b_i}{\dot {r}_1-b_1}}=\dfrac {a_i}{a_1},i=2,\dots ,n$$

 
 
 
 Re: Решение системы неоднородных ОДУ
Сообщение05.03.2010, 10:28 
mihiv в сообщении #294709 писал(а):
Аналогично:$$\dfrac {\dot {r}_i-b_i}{\dot {r}_1-b_1}}=\dfrac {a_i}{a_1},i=2,\dots ,n$$


Это понятно, вчера просто забыл написать. Переносим вектор $\mathbf{b}$ в левую часть и получаем:

$\dfrac {\dot {r}_{i}-b_{i}}{\dot {r}_{j}-b_{j}}}=\dfrac {a_{i}}{a_{j}}$.

А вот как теперь решить это уравнение? Выразить зависимость $r_{i}$, через $r_{j}$ избавившись от $\mathrm{d}\,t$. Когда были вышеописанные частные случаи - это было тривиально. А как поступать в этой ситуации? (Я что-то совсем потерялся)

С уважением,
G^a.

 
 
 
 Re: Решение системы неоднородных ОДУ
Сообщение05.03.2010, 11:26 
Все $r_i$ выразить через $r_1$ и подставить в любое из уравнений системы. Получится уравнение только на $r_1$.

 
 
 
 Re: Решение системы неоднородных ОДУ
Сообщение05.03.2010, 11:51 
G^a в сообщении #294599 писал(а):
Есть система неоднородных ОДУ:

$\mathbf{\dot{r}}=\mathbf{a}\,\lvert\mathbf{r}\rvert+\mathbf{b},\quad\mathbf{a},\,\mathbf{b},\,\mathbf{r}\in\mathbb{R}^{n}$

переходим в ортонормированный базис так чтобы первый базисный вектор был сонаправлен с $\mathbf{a}$, а вектор $\mathbf{b}$ лежал в плоскости первых двух базисных векторов. в новом базисе система сводится к одному нетривиальному уравнению.

 
 
 
 Re: Решение системы неоднородных ОДУ
Сообщение05.03.2010, 15:13 
V.V. в сообщении #294747 писал(а):
Все $r_i$ выразить через $r_1$ и подставить в любое из уравнений системы. Получится уравнение только на $r_1$.

Но для этого нужно решить вот это уравнение:

$\dfrac {\dot {r}_{i}-b_{i}}{\dot {r}_{1}-b_{1}}}=\dfrac {a_{i}}{a_{1}}$.

Причём без $t$. А как будет выглядеть тогда решение этого уравнения?

terminator-II в сообщении #294755 писал(а):
переходим в ортонормированный базис так чтобы первый базисный вектор был сонаправлен с $\mathbf{a}$, а вектор $\mathbf{b}$ лежал в плоскости первых двух базисных векторов. в новом базисе система сводится к одному нетривиальному уравнению.

Идея интересная. А применительно к решению дифуров где об этом можно почитать?

С уважением,
G^a.

 
 
 
 Re: Решение системы неоднородных ОДУ
Сообщение05.03.2010, 15:53 
terminator-II в сообщении #294755 писал(а):
G^a в сообщении #294599 писал(а):
Есть система неоднородных ОДУ:

$\mathbf{\dot{r}}=\mathbf{a}\,\lvert\mathbf{r}\rvert+\mathbf{b},\quad\mathbf{a},\,\mathbf{b},\,\mathbf{r}\in\mathbb{R}^{n}$

переходим в ортонормированный базис так чтобы первый базисный вектор был сонаправлен с $\mathbf{a}$, а вектор $\mathbf{b}$ лежал в плоскости первых двух базисных векторов. в новом базисе система сводится к одному нетривиальному уравнению.


это уравнение имеет вид $\dot x=c_1\sqrt{x^2+c_2t^2+c_3t+c_4}+c_5$. А как его решать я не знаю

 
 
 
 Re: Решение системы неоднородных ОДУ
Сообщение05.03.2010, 23:44 
terminator-II в сообщении #294841 писал(а):
это уравнение имеет вид $\dot x=c_1\sqrt{x^2+c_2t^2+c_3t+c_4}+c_5$. А как его решать я не знаю


Да, всё верно. Похоже разобрался! Я зациклился на том, что первый интеграл не должен зависеть от времени, параметра $t$, и фазовый поток должен сохраняться. Но в общем случае, это не так.

Если не переходить в специальный (развёрнутый) базис, вариант которого предложил terminator-II, то решение можно строить таким образом. Из уравнения:

$\dfrac {\dot {r}_i-b_i}{\dot {r}_j-b_j}}=\dfrac {a_i}{a_j}$,

находим первый интеграл:

$r_{j}=\dfrac{a_{i}r_{j}+d_{ji}t+c_{ji}}{a_{j}}$,

где: $d_{ji}=a_{j}b_{i}-a_{i}b_{j}$, $c_{ji}$ - константа интегрирования.

Тогда уравнение принимает вид:
$$\dot{r}_{j}=\sqrt{\lvert\mathbf{a}\rvert^{2}r^{2}_{j}+r_{j}2\sum{a_{i}c_{ji}}+r_{j}t2\sum{a_{i}d_{ji}}+t^{2}\sum{d^{2}_{ji}}+t2\sum{d_{ji}c_{ji}}+\sum{c^{2}_{ji}}}+b_{j}.$$

По идее оно эквивалентно тому (пока не проверял), что получается при выборе специального (развёрнутого базиса).

Поправьте меня, пожалуйста, если не прав!

Есть идея. А если базис не только разворачивать, но и сдвигать, "зануляя" $\mathbf b $, тогда по идее должно получиться (в обозначениях terminator-II):

$\dot x=c_1\sqrt{x^2+c_4}$.

Оно решается. Далее возвращаемся в "несдвинутый" базис, а затем и в "неразвёрнутый". Получаем окончательное решение.

Верна ли идея?

С уважением,
G^a.

 
 
 
 Re: Решение системы неоднородных ОДУ
Сообщение09.03.2010, 13:28 
Вопрос можно считать закрытым.

Спасибо всем, кто откликлнулся и помог! :)

С уважением,
G^a.

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group