ватит прикалываться

Напряженность гравитационного поля в точке пространства по-вашему зависит только от координат точки пространства? От координат источников гравитационного поля не зависит?

Частная производная функции

по времени тогда не равна нулю, а просто не существует согласно определению частной производной функции.
Это неверно. Поскольку всё происходит в пространстве-времени, то все функции предполагаются заданными на пространстве-времени, то есть, являются функциями четырёх переменных

. Если кому-то не захотелось указывать в списке переменных буковку

, поскольку функция от этой переменной не зависит (в том смысле, что при любых

выполняется равенство

), то это не означает, что частная производная

не определена. Она определена и равна

.
Зато частная производная сложной функции

по времени, равная 2, существует согласно определению частной производной сложной функции, которое дал Someone, и которое заметно отличается от определения частной производной функции
Опять глупость пишете. "Частная производная сложной функции" и просто "частная производная" определяются абсолютно одинаково. Между "сложной функцией" и просто "функцией" абсолютно никакой разницы нет. Разница есть только в способе задания, но я же Вам показывал, что одну и ту же функцию можно задавать разными способами, причём, при одних способах она будет "простой", а при других - "сложной", оставаясь при этом одной и той же функцией одних и тех же переменных, и частные производные определяются совершенно независимо от способа задания.
Посмотрите, сколько раз Вы уже ошибались и продолжаете ошибаться. Может быть, поубавите свою спесь и засядете, наконец, за учебник?