Нас интересует только ордината. Поэтому достаточно считать, что
, т.е. что квадратичная функция чётной (этого всегда можно добится сдвигом по иксам). Какую функцию на неё потом ни навешивай -- хоть кубическую, хоть какую -- она так чётной и останется. Т.е.
ненулевых корней будет и слева, и справа поровну. А значит (поскольку общее количество корней нечётно), в нуле обязательно должен быть корень.
Вот и прикиньте, при каких значениях ординаты в нуле получается именно ноль. А потом выберите из трёх возможных значений то, которое даёт именно три корня, а не один и не пять.