2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Задачка по теорверу: игра
Сообщение10.01.2010, 01:28 
Задача сформулирована следующим образом:
Играем в игру. У нас есть некоторая сумма денег x. Игра состоит из большого количеста раундов. Каждый раунд мы должны ставить половину от всей текущей суммы. Если выигрываем - забираем удвоенное количество поставленных денег, если проигрываем - ставка теряется. Вероятность выигрыша 60%, вероятность проигрыша 40%.

К чему будет стремиться количество наших денег при большом количестве раундов? Варианты ответов.

1. К нулю.
2. Будет случайно колебаться около начального x.
3. К бесконечности.

Какой будет правильный ответ? Я считаю, что 3. Но говорят, что 1. Рассудите нас, приведите правильное решение, пожалуйста.

 
 
 
 Re: Задачка по терверу
Сообщение10.01.2010, 08:11 
Правильно действительно 1. Приведите Ваши рассуждения. Во сколько раз увеличивается сумма при выигрыше?

 
 
 
 Re: Задачка по терверу
Сообщение10.01.2010, 19:30 
Пусть X - начальная сумма.
МО после первого раунда EX=1.5*X*0.6+0.5*X*0.4=1.1X
После второго раунда X*(1.1)^2 и т.д...

 
 
 
 Re: Задачка по терверу
Сообщение11.01.2010, 17:42 
Аватара пользователя
Каждый раунд - это умножение текущей суммы на константу. За много раундов получится длинное произведение. Возьмите логарифм - это переводит произведение в сумму независимых (и одинаково распределенных) величин. Дальше подумайте сами.

 
 
 
 Re: Задачка по терверу
Сообщение17.01.2010, 11:08 
Эта задача получила для меня неожиданное продолжение.

Обозначим p=0.6 - вероятность выигрыша в раунде, N - количество отыгранных раундов

При $N \to \infty$ имеем $pN$ выигрышей и $(1-p)N$ проигрышей.

Cумма после N-го раунда игры $S_N = S_0 1.5^{pN}0.5^{(1-p)N}$

$\lim \limits_{N \to \infty} S_N = 0$ при $p < log_{3}2$

Но мат. ожидание $S_N$ равно $S_{0}(1.5p+0.5(1-p))^N$ и при p=0.6, $N \to \infty$ матожидание $S_N$ растёт до бесконечности.

Озадаченный этим фактом (матожидание $S_N$ бесконечно, а предел $\left{S_N\right}$ нулевой, я решил выписать матожидание по определению, как сумму компонент распределения, умноженных на вероятность каждой компоненты:

$S_{0}\sum\limits_{i=0}^N C_N^i p^{i}(1-p)^{N-i}1.5^{i}0.5^{N-i}$

Подстановка произвольно выбранных примеров N, p в обе формулы показывает, что матожидание одинаковое, независимо от того, какой формулой считать.

Теперь вопрос: Является ли нижеприведённая формула какой-то знаменитой известной формулой и как её доказать, не обращаясь к теории вероятностей:

$(Ap+B(1-p))^N = \sum\limits_{i=0}^N C_N^i p^{i}(1-p)^{N-i}A^{i}B^{N-i}$

На случайно выбранных A,B,N,p равенство у меня выполнялось, что оставляет надежду на справедливость формулы для всех A,B,N,p

 
 
 
 Re: Задачка по терверу
Сообщение17.01.2010, 11:36 
Аватара пользователя
Zyxel в сообщении #281152 писал(а):
Является ли нижеприведённая формула какой-то знаменитой известной формулой и как её доказать, не обращаясь к теории вероятностей

Да. Это бином Ньютона.

 
 
 
 Re: Задачка по терверу
Сообщение17.01.2010, 11:38 
Аватара пользователя
Бином Ньютона в чистом виде: $(Ap+B(1-p))^N=\sum\limits_{i=0}^N C^i_N (Ap)^i (B(1-p))^{N-i}$.
Доказывается, например, по индукции.

Опоздал.

 
 
 
 Re: Задачка по терверу
Сообщение17.01.2010, 12:27 
Спасибо :)

Вот я склерозник, всё уже позабыл :)

 
 
 
 Re: Задачка по теорверу: игра
Сообщение26.11.2015, 20:02 
Я придумал эту задачку, кстати 8-)

 
 
 
 Re: Задачка по теорверу: игра
Сообщение27.11.2015, 14:40 
Аватара пользователя
talash в сообщении #1077075 писал(а):
Я придумал эту задачку, кстати 8-)


Похвально!

Теперь придумайте к ней правильное решение! :D

 
 
 [ Сообщений: 10 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group