2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Произведение случ. величин, имеющих норм. распр.
Сообщение07.01.2010, 20:15 
Аватара пользователя
Пусть случайные величины $X_1,X_2,...,X_n$ независимы и распределены по нормальному закону с математическим ожиданием $a$ и дисперсией $\sigma^2$, а случайная величина $Z$ имеет вид $Z=X_1X_2\ldots X_n$. Требуется найти плотность распределения с.в. $Z$.
Я попытался решить данную задачу для $n=2$, но не смог взять следующий интеграл:
$$\int_{0}^{\infty}\frac 1x e^{-\frac{(x-a)^2}{2\sigma^2}-\frac{(\frac zx -a)^2}{2\sigma^2}} \
d x.$$

-- Чт янв 07, 2010 21:31:23 --

Я пришел к выводу, что для решения поставленной задачи достаточно решить её частный случай при $a=0$. Тогда необходимо вычислить значение интеграла
$$\int_{0}^{\infty} \frac 1x e^{-x^2-\frac {z^2}{x^2}}.$$

 
 
 
 Re: Произведение случ. величин, имеющих норм. распр.
Сообщение09.01.2010, 19:46 
В предыдущем сообщении плотности выписаны с точностью до констант. Мне удобно было вычислить интеграл в полярных координатах, поэтому начну с функции распределения. Итак, ищем плотность произведения независимо распределенных стандартных нормальных случайных величин; рассматриваем случай $z>0$ ($z<0$ легко к нему сводится). Учитывая симметрию, получим
$F(z) = \frac{4}{2\pi} \int\limits_0^{\pi/4}d\varphi \int\limits_0^{z/(\cos \varphi \sin \varphi)} e^{-u/2}\,du/2 = - \frac{1}{\pi} \int\limits_0^{\pi/2} \left( e^{-z/\sin \phi } -1\right)\,d\phi$.
Дифференцируя, делая замену переменной $u=\sin \phi $, а затем замену $t=1/u$, получим
$f(z) = \frac{1}{\pi} \int\limits_0^1 e^{-z/u} \frac{du}{u\sqrt{1-u^2}} = \frac {1}{\pi}\int\limits_{1}^{+\infty} e^{-zt} (t^2-1)^{-1/2}dt$.
Последний интеграл есть одно из интегральных представлений модифицированной функции Бесселя второго рода нулевого значка.
Таким образом, $f(z) =  \frac {1}{\pi} K_0(|z|)$.

 
 
 
 Re: Произведение случ. величин, имеющих норм. распр.
Сообщение10.01.2010, 13:30 
Аватара пользователя
Спасибо! Можно ли обобщить данное решение на произвольное $n$?

 
 
 
 Re: Произведение случ. величин, имеющих норм. распр.
Сообщение10.01.2010, 21:24 
В связи с распределением произведения $n$ независимых центральных нормальных случайных величин, легко найти в Интернете ссылку на статью M.D. Springer, W.E. Thompson The distribution of products of beta, gamma and Gaussian random variables // SIAM J. Appl. Math. Vol. 18., No.4, P. 721 (1970). jstor. К сожалению, у меня доступа к полному тексту этой статьи нет.

К слову, для произведения двух и трех независимых центральных нормальных случайных величин результат приведен на mathworld; также замечу, что для двух нормальных величин распределение произведения может быть легко найдено и в случае их коррелированности, см. задачу 3.1а (с. 77) в книге Левин Б.Р. Теоретические основы статистической радиотехники. — М., 1989.

 
 
 
 Re: Произведение случ. величин, имеющих норм. распр.
Сообщение11.01.2010, 10:38 
Аватара пользователя
Большое спасибо!

 
 
 
 Re: Произведение случ. величин, имеющих норм. распр.
Сообщение06.12.2016, 00:45 
При различающихся дисперсиях получается $P(z)=\frac{1}{\pi \sigma_x \sigma_y}K_0(\frac{|z|}{\sigma_x \sigma_y} )$

Но какой будет предел распределения при $\sigma_y\to0$ ?
... у этого бесселя асимптотика вроде $K_0(z\to\infty)=\sqrt{\frac{\pi}{2z}}e^{-z}$

Вроде явно не получается нормальное распределение от одной переменной

 
 
 
 Re: Произведение случ. величин, имеющих норм. распр.
Сообщение06.12.2016, 18:02 
Theoristos, в чем вопрос или что Вы хотите обсудить?

 
 
 
 Re: Произведение случ. величин, имеющих норм. распр.
Сообщение11.12.2016, 11:10 
GAA: не пойму, если выше верный вид распределения с разными $\sigma_x,\sigma_y$, получается ли предельный переход к обычному нормальному распределению при одной из сигм $\to 0$, когда мы "зажимаем" один из множителей до постоянного числа.
И должен ли вообще получаться, хотя вроде как должен.

 
 
 
 Re: Произведение случ. величин, имеющих норм. распр.
Сообщение11.12.2016, 12:45 
Почему - должен?

 
 
 
 Re: Произведение случ. величин, имеющих норм. распр.
Сообщение11.12.2016, 13:04 
Otta: а у нас в этом пределе разве не получается произведение величины с норм. распределением на константу?

 
 
 
 Re: Произведение случ. величин, имеющих норм. распр.
Сообщение11.12.2016, 14:22 
Аватара пользователя
Theoristos в сообщении #1175911 писал(а):
Otta: а у нас в этом пределе разве не получается произведение величины с норм. распределением на константу?

На нуль?

 
 
 
 Re: Произведение случ. величин, имеющих норм. распр.
Сообщение11.12.2016, 15:45 
--mS-- в сообщении #1175933 писал(а):
На нуль?

Тьфу ты! Смешался исходный пост со смещённым распределением.
Прошу прощения, вопросов нет :-)

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group