Здравствуйте.
Проверьте, пожалуйста решения 4-х задач по теории графов.
Задача 1. Доказать справедливость тождества для произвольных множеств А, B и C:
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
% WGbbGaeyOkIGSaamOqaaGaayjkaiaawMcaaiabgEna0kaadoeacqGH
% 9aqpdaqadaqaaiaadgeacqGHxdaTcaWGdbaacaGLOaGaayzkaaGaey
% OkIG8aaeWaaeaacaWGcbGaey41aqRaam4qaaGaayjkaiaawMcaaaaa
% !4A85!
\[
\left( {A \cup B} \right) \times C = \left( {A \times C} \right) \cup \left( {B \times C} \right)
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
% WGbbGaeyOkIGSaamOqaaGaayjkaiaawMcaaiabgEna0kaadoeacqGH
% 9aqpdaqadaqaaiaadgeacqGHxdaTcaWGdbaacaGLOaGaayzkaaGaey
% OkIG8aaeWaaeaacaWGcbGaey41aqRaam4qaaGaayjkaiaawMcaaaaa
% !4A85!
\[
\left( {A \cup B} \right) \times C = \left( {A \times C} \right) \cup \left( {B \times C} \right)
\]
$](https://dxdy-03.korotkov.co.uk/f/a/0/0/a007a14a0cb24731f9b74dc180a75fb782.png)
Докажем тождество методом двух взаимных включений.
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaqada
% qaaiaadgeacqGHQicYcaWGcbaacaGLOaGaayzkaaGaey41aqRaam4q
% aiabg2da9maacmaabaWaaqGaaeaadaqadaqaaiaadIhacaGGSaGaam
% yEaaGaayjkaiaawMcaaaGaayjcSdGaamiEaiabgIGiolaadgeacqGH
% QicYcaWGcbGaaiilaiaadMhacqGHiiIZcaWGdbaacaGL7bGaayzFaa
% aabaWaaeWaaeaacaWGbbGaey41aqRaam4qaaGaayjkaiaawMcaaiab
% gQIiipaabmaabaGaamOqaiabgEna0kaadoeaaiaawIcacaGLPaaacq
% GH9aqpdaGadaqaamaaeiaabaWaaeWaaeaacaWG4bGaaiilaiaadMha
% aiaawIcacaGLPaaaaiaawIa7aiaadIhacqGHiiIZcaWGbbGaaiilai
% aadMhacqGHiiIZcaWGdbaacaGL7bGaayzFaaGaeyOkIG8aaiWaaeaa
% daabcaqaamaabmaabaGaamiEaiaacYcacaWG5baacaGLOaGaayzkaa
% aacaGLiWoacaWG4bGaeyicI4SaamOqaiaacYcacaWG5bGaeyicI4Sa
% am4qaaGaay5Eaiaaw2haaaaaaa!7D4E!
\[
\begin{array}{l}
\left( {A \cup B} \right) \times C = \left\{ {\left. {\left( {x,y} \right)} \right|x \in A \cup B,y \in C} \right\} \\
\left( {A \times C} \right) \cup \left( {B \times C} \right) = \left\{ {\left. {\left( {x,y} \right)} \right|x \in A,y \in C} \right\} \cup \left\{ {\left. {\left( {x,y} \right)} \right|x \in B,y \in C} \right\} \\
\end{array}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaqada
% qaaiaadgeacqGHQicYcaWGcbaacaGLOaGaayzkaaGaey41aqRaam4q
% aiabg2da9maacmaabaWaaqGaaeaadaqadaqaaiaadIhacaGGSaGaam
% yEaaGaayjkaiaawMcaaaGaayjcSdGaamiEaiabgIGiolaadgeacqGH
% QicYcaWGcbGaaiilaiaadMhacqGHiiIZcaWGdbaacaGL7bGaayzFaa
% aabaWaaeWaaeaacaWGbbGaey41aqRaam4qaaGaayjkaiaawMcaaiab
% gQIiipaabmaabaGaamOqaiabgEna0kaadoeaaiaawIcacaGLPaaacq
% GH9aqpdaGadaqaamaaeiaabaWaaeWaaeaacaWG4bGaaiilaiaadMha
% aiaawIcacaGLPaaaaiaawIa7aiaadIhacqGHiiIZcaWGbbGaaiilai
% aadMhacqGHiiIZcaWGdbaacaGL7bGaayzFaaGaeyOkIG8aaiWaaeaa
% daabcaqaamaabmaabaGaamiEaiaacYcacaWG5baacaGLOaGaayzkaa
% aacaGLiWoacaWG4bGaeyicI4SaamOqaiaacYcacaWG5bGaeyicI4Sa
% am4qaaGaay5Eaiaaw2haaaaaaa!7D4E!
\[
\begin{array}{l}
\left( {A \cup B} \right) \times C = \left\{ {\left. {\left( {x,y} \right)} \right|x \in A \cup B,y \in C} \right\} \\
\left( {A \times C} \right) \cup \left( {B \times C} \right) = \left\{ {\left. {\left( {x,y} \right)} \right|x \in A,y \in C} \right\} \cup \left\{ {\left. {\left( {x,y} \right)} \right|x \in B,y \in C} \right\} \\
\end{array}
\]
$](https://dxdy-01.korotkov.co.uk/f/4/c/a/4ca4829250f35b8344d7e25f81a2376c82.png)
Очевидно, что
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
% WGbbGaeyOkIGSaamOqaaGaayjkaiaawMcaaiabgEna0kaadoeacqGH
% gksZdaqadaqaaiaadgeacqGHxdaTcaWGdbaacaGLOaGaayzkaaGaey
% OkIG8aaeWaaeaacaWGcbGaey41aqRaam4qaaGaayjkaiaawMcaaaaa
% !4B80!
\[
\left( {A \cup B} \right) \times C \subseteq \left( {A \times C} \right) \cup \left( {B \times C} \right)
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
% WGbbGaeyOkIGSaamOqaaGaayjkaiaawMcaaiabgEna0kaadoeacqGH
% gksZdaqadaqaaiaadgeacqGHxdaTcaWGdbaacaGLOaGaayzkaaGaey
% OkIG8aaeWaaeaacaWGcbGaey41aqRaam4qaaGaayjkaiaawMcaaaaa
% !4B80!
\[
\left( {A \cup B} \right) \times C \subseteq \left( {A \times C} \right) \cup \left( {B \times C} \right)
\]
$](https://dxdy-01.korotkov.co.uk/f/0/e/a/0ea4c621a82c78e179165c6b5913dc6682.png)
и
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
% WGbbGaey41aqRaam4qaaGaayjkaiaawMcaaiabgQIiipaabmaabaGa
% amOqaiabgEna0kaadoeaaiaawIcacaGLPaaacqGHgksZdaqadaqaai
% aadgeacqGHQicYcaWGdbaacaGLOaGaayzkaaGaey41aqRaam4qaaaa
% !4B81!
\[
\left( {A \times C} \right) \cup \left( {B \times C} \right) \subseteq \left( {A \cup C} \right) \times C
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca
% WGbbGaey41aqRaam4qaaGaayjkaiaawMcaaiabgQIiipaabmaabaGa
% amOqaiabgEna0kaadoeaaiaawIcacaGLPaaacqGHgksZdaqadaqaai
% aadgeacqGHQicYcaWGdbaacaGLOaGaayzkaaGaey41aqRaam4qaaaa
% !4B81!
\[
\left( {A \times C} \right) \cup \left( {B \times C} \right) \subseteq \left( {A \cup C} \right) \times C
\]
$](https://dxdy-01.korotkov.co.uk/f/8/4/f/84f6ae369ebac36c0323c34a4e94908782.png)
Итак, тождество доказано.
Задача 2. . Доказать, что множества Х и Y равномощны, построив взаимно-однозначное соответствие между ними.
Х=[–1,1], Y=(–1,1).
Доказательство

![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm
% aabaGaaeiEaaGaayjkaiaawMcaaiabg2da9maaceaaeaqabeaacaqG
% 4bGaaeilaiaaykW7caaMc8UaaGPaVlaabIhacqGHGjsUcaaIWaGaai
% ilamaayaaabaGaaeynaiaab6cacaqGUaGaaeOlaiaabwdaaSqaaKqz
% afGaaeOBaaGccaGL44pacaqGSaGaaGPaVlaabccacaqGWaGaaeilam
% aayaaabaGaae4naiaab6cacaqGUaGaaeOlaiaabEdaaSqaaKqzafGa
% aeOBaaGccaGL44pacaGGSaGaaGPaVlaaykW7caqGUbGaeyicI4SaaC
% OtaiaacUdaaeaacaqGTaGaaeymaiaabYcacaaMc8UaaGPaVlaaykW7
% caqG4bGaeyypa0JaaeimaiaabYcacaqG1aGaae4oaaqaaiaabgdaca
% qGSaGaaGPaVlaaykW7caaMc8UaaeiEaiabg2da9iaabcdacaqGSaGa
% ae4naiaabUdaaeaacaaIWaGaaiilamaayaaabaGaaeynaiaab6caca
% qGUaGaaeOlaiaabwdaaSqaaKqzafGaaeOBaaGccaGL44pacaqGSaGa
% aGPaVlaaykW7caaMc8UaaeiEaiabg2da9iaaicdacaGGSaWaaGbaae
% aacaqG1aGaaeOlaiaab6cacaqGUaGaaeynaaWcbaqcLbuacaqGUbGa
% ey4kaSIaaGymaaGccaGL44pacaqGSaGaaGPaVlaaykW7caaMc8Uaae
% OBaiabgIGiolaah6eacaGG7aaabaGaaGimaiaacYcadaagaaqaaiaa
% bEdacaqGUaGaaeOlaiaab6cacaqG3aaaleaajugqbiaab6gaaOGaay
% jo+dGaaeilaiaaykW7caaMc8UaaGPaVlaabIhacqGH9aqpcaaIWaGa
% aiilamaayaaabaGaae4naiaab6cacaqGUaGaaeOlaiaabEdaaSqaaK
% qzafGaaeOBaiabgUcaRiaaigdaaOGaayjo+dGaaeilaiaaykW7caaM
% c8UaaGPaVlaab6gacqGHiiIZcaWHobGaaiOlaaaacaGL7baacaWGMb
% GaaiOoaiaacIcacqGHsislcaaIXaGaaiilaiaabccacaaIXaGaaiyk
% aiabgsziRkaacUfacqGHsislcaaIXaGaaiilaiaabccacaaIXaGaai
% yxaiaac6caaaa!CC50!
\[
f\left( {\rm{x}} \right) = \left\{ \begin{array}{l}
{\rm{x}}{\rm{,}}\,\,\,{\rm{x}} \ne 0,\underbrace {{\rm{5}}...{\rm{5}}}_{\rm{n}}{\rm{,}}\,{\rm{ 0}}{\rm{,}}\underbrace {{\rm{7}}...{\rm{7}}}_{\rm{n}},\,\,{\rm{n}} \in {\bf{N}}; \\
{\rm{ - 1}}{\rm{,}}\,\,\,{\rm{x}} = {\rm{0}}{\rm{,5;}} \\
{\rm{1}}{\rm{,}}\,\,\,{\rm{x}} = {\rm{0}}{\rm{,7;}} \\
0,\underbrace {{\rm{5}}...{\rm{5}}}_{\rm{n}}{\rm{,}}\,\,\,{\rm{x}} = 0,\underbrace {{\rm{5}}...{\rm{5}}}_{{\rm{n}} + 1}{\rm{,}}\,\,\,{\rm{n}} \in {\bf{N}}; \\
0,\underbrace {{\rm{7}}...{\rm{7}}}_{\rm{n}}{\rm{,}}\,\,\,{\rm{x}} = 0,\underbrace {{\rm{7}}...{\rm{7}}}_{{\rm{n}} + 1}{\rm{,}}\,\,\,{\rm{n}} \in {\bf{N}}. \\
\end{array} \right.f:( - 1,{\rm{ }}1) \leftrightarrow [ - 1,{\rm{ }}1].
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm
% aabaGaaeiEaaGaayjkaiaawMcaaiabg2da9maaceaaeaqabeaacaqG
% 4bGaaeilaiaaykW7caaMc8UaaGPaVlaabIhacqGHGjsUcaaIWaGaai
% ilamaayaaabaGaaeynaiaab6cacaqGUaGaaeOlaiaabwdaaSqaaKqz
% afGaaeOBaaGccaGL44pacaqGSaGaaGPaVlaabccacaqGWaGaaeilam
% aayaaabaGaae4naiaab6cacaqGUaGaaeOlaiaabEdaaSqaaKqzafGa
% aeOBaaGccaGL44pacaGGSaGaaGPaVlaaykW7caqGUbGaeyicI4SaaC
% OtaiaacUdaaeaacaqGTaGaaeymaiaabYcacaaMc8UaaGPaVlaaykW7
% caqG4bGaeyypa0JaaeimaiaabYcacaqG1aGaae4oaaqaaiaabgdaca
% qGSaGaaGPaVlaaykW7caaMc8UaaeiEaiabg2da9iaabcdacaqGSaGa
% ae4naiaabUdaaeaacaaIWaGaaiilamaayaaabaGaaeynaiaab6caca
% qGUaGaaeOlaiaabwdaaSqaaKqzafGaaeOBaaGccaGL44pacaqGSaGa
% aGPaVlaaykW7caaMc8UaaeiEaiabg2da9iaaicdacaGGSaWaaGbaae
% aacaqG1aGaaeOlaiaab6cacaqGUaGaaeynaaWcbaqcLbuacaqGUbGa
% ey4kaSIaaGymaaGccaGL44pacaqGSaGaaGPaVlaaykW7caaMc8Uaae
% OBaiabgIGiolaah6eacaGG7aaabaGaaGimaiaacYcadaagaaqaaiaa
% bEdacaqGUaGaaeOlaiaab6cacaqG3aaaleaajugqbiaab6gaaOGaay
% jo+dGaaeilaiaaykW7caaMc8UaaGPaVlaabIhacqGH9aqpcaaIWaGa
% aiilamaayaaabaGaae4naiaab6cacaqGUaGaaeOlaiaabEdaaSqaaK
% qzafGaaeOBaiabgUcaRiaaigdaaOGaayjo+dGaaeilaiaaykW7caaM
% c8UaaGPaVlaab6gacqGHiiIZcaWHobGaaiOlaaaacaGL7baacaWGMb
% GaaiOoaiaacIcacqGHsislcaaIXaGaaiilaiaabccacaaIXaGaaiyk
% aiabgsziRkaacUfacqGHsislcaaIXaGaaiilaiaabccacaaIXaGaai
% yxaiaac6caaaa!CC50!
\[
f\left( {\rm{x}} \right) = \left\{ \begin{array}{l}
{\rm{x}}{\rm{,}}\,\,\,{\rm{x}} \ne 0,\underbrace {{\rm{5}}...{\rm{5}}}_{\rm{n}}{\rm{,}}\,{\rm{ 0}}{\rm{,}}\underbrace {{\rm{7}}...{\rm{7}}}_{\rm{n}},\,\,{\rm{n}} \in {\bf{N}}; \\
{\rm{ - 1}}{\rm{,}}\,\,\,{\rm{x}} = {\rm{0}}{\rm{,5;}} \\
{\rm{1}}{\rm{,}}\,\,\,{\rm{x}} = {\rm{0}}{\rm{,7;}} \\
0,\underbrace {{\rm{5}}...{\rm{5}}}_{\rm{n}}{\rm{,}}\,\,\,{\rm{x}} = 0,\underbrace {{\rm{5}}...{\rm{5}}}_{{\rm{n}} + 1}{\rm{,}}\,\,\,{\rm{n}} \in {\bf{N}}; \\
0,\underbrace {{\rm{7}}...{\rm{7}}}_{\rm{n}}{\rm{,}}\,\,\,{\rm{x}} = 0,\underbrace {{\rm{7}}...{\rm{7}}}_{{\rm{n}} + 1}{\rm{,}}\,\,\,{\rm{n}} \in {\bf{N}}. \\
\end{array} \right.f:( - 1,{\rm{ }}1) \leftrightarrow [ - 1,{\rm{ }}1].
\]
$](https://dxdy-03.korotkov.co.uk/f/6/4/b/64b8bf95c8b8cf2cf77f6dd5b621bd7082.png)
Задача 3.
Даны три вещественных функции:
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb
% GaaiikaiaadIhacaGGPaGaeyypa0JaamiEamaaCaaaleqabaGaaGin
% aaaakiabgUcaRiaaigdacaaI2aGaai4oaaqaaiaadEgacaGGOaGaam
% iEaiaacMcacqGH9aqpcaaI1aGaamiEaiabgUcaRiaaikdacaGG7aaa
% baGaamiAaiaacIcacaWG4bGaaiykaiabg2da9iaaiEdadaahaaWcbe
% qaaiaadIhaaaGccqGHsislcaaIXaGaaGyoaiaacUdaaaaa!5113!
\[
\begin{array}{l}
f(x) = x^4 + 16; \\
g(x) = 5x + 2; \\
h(x) = 7^x - 19; \\
\end{array}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb
% GaaiikaiaadIhacaGGPaGaeyypa0JaamiEamaaCaaaleqabaGaaGin
% aaaakiabgUcaRiaaigdacaaI2aGaai4oaaqaaiaadEgacaGGOaGaam
% iEaiaacMcacqGH9aqpcaaI1aGaamiEaiabgUcaRiaaikdacaGG7aaa
% baGaamiAaiaacIcacaWG4bGaaiykaiabg2da9iaaiEdadaahaaWcbe
% qaaiaadIhaaaGccqGHsislcaaIXaGaaGyoaiaacUdaaaaa!5113!
\[
\begin{array}{l}
f(x) = x^4 + 16; \\
g(x) = 5x + 2; \\
h(x) = 7^x - 19; \\
\end{array}
\]
$](https://dxdy-03.korotkov.co.uk/f/6/2/9/629de95d89ca2f72fe4f74534e1b2fd882.png)
1) Найти заданные композиции функций: fgh, hgf, ffh.
2) Являются ли f, g, h инъекциями, сюръекциями, биекциями на R?
3) Найти обратные функции к f, g, h. Если функции со своими областями определения обратных не имеют, то найти обратные функции к их сужениям.
1. 1) композиции функций:
fgh -
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI
% cacaaI1aGaeyyXICTaaiikaiaaiEdadaahaaWcbeqaaiaadIhaaaGc
% cqGHsislcaaIXaGaaGyoaiaacMcacqGHRaWkcaaIYaGaaiykaiabg2
% da9iaacIcacaaI1aGaeyyXICTaaiikaiaaiEdadaahaaWcbeqaaiaa
% dIhaaaGccqGHsislcaaIXaGaaGyoaiaacMcacqGHRaWkcaaIYaGaai
% ykamaaCaaaleqabaGaaGinaaaakiabgUcaRiaaigdacaaI2aGaai4o
% aaaa!5361!
\[
f(5 \cdot (7^x - 19) + 2) = (5 \cdot (7^x - 19) + 2)^4 + 16;
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI
% cacaaI1aGaeyyXICTaaiikaiaaiEdadaahaaWcbeqaaiaadIhaaaGc
% cqGHsislcaaIXaGaaGyoaiaacMcacqGHRaWkcaaIYaGaaiykaiabg2
% da9iaacIcacaaI1aGaeyyXICTaaiikaiaaiEdadaahaaWcbeqaaiaa
% dIhaaaGccqGHsislcaaIXaGaaGyoaiaacMcacqGHRaWkcaaIYaGaai
% ykamaaCaaaleqabaGaaGinaaaakiabgUcaRiaaigdacaaI2aGaai4o
% aaaa!5361!
\[
f(5 \cdot (7^x - 19) + 2) = (5 \cdot (7^x - 19) + 2)^4 + 16;
\]
$](https://dxdy-02.korotkov.co.uk/f/9/4/d/94d2bf4bfb7a163360817baad2f8b08b82.png)
hgf -
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaacI
% cacaaI1aGaeyyXICTaaiikaiaadIhadaahaaWcbeqaaiaaisdaaaGc
% cqGHRaWkcaaIXaGaaGOnaiaacMcacqGHRaWkcaaIYaGaaiykaiabg2
% da9iaaiEdadaahaaWcbeqaaiaacIcacaaI1aGaeyyXICTaaiikaiaa
% dIhadaahaaadbeqaaiaaisdaaaWccqGHRaWkcaaIXaGaaGOnaiaacM
% cacqGHRaWkcaaIYaGaaiykaaaakiabgkHiTiaaigdacaaI5aGaai4o
% aaaa!5354!
\[
h(5 \cdot (x^4 + 16) + 2) = 7^{(5 \cdot (x^4 + 16) + 2)} - 19;
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaacI
% cacaaI1aGaeyyXICTaaiikaiaadIhadaahaaWcbeqaaiaaisdaaaGc
% cqGHRaWkcaaIXaGaaGOnaiaacMcacqGHRaWkcaaIYaGaaiykaiabg2
% da9iaaiEdadaahaaWcbeqaaiaacIcacaaI1aGaeyyXICTaaiikaiaa
% dIhadaahaaadbeqaaiaaisdaaaWccqGHRaWkcaaIXaGaaGOnaiaacM
% cacqGHRaWkcaaIYaGaaiykaaaakiabgkHiTiaaigdacaaI5aGaai4o
% aaaa!5354!
\[
h(5 \cdot (x^4 + 16) + 2) = 7^{(5 \cdot (x^4 + 16) + 2)} - 19;
\]
$](https://dxdy-03.korotkov.co.uk/f/6/9/2/692ff81df5258e666857ab85dc60200182.png)
ffh -
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI
% cacaGGOaGaaG4namaaCaaaleqabaGaamiEaaaakiabgkHiTiaaigda
% caaI5aGaaiykamaaCaaaleqabaGaaGinaaaakiabgUcaRiaaigdaca
% aI2aGaaiykaiabg2da9iaacIcacaGGOaGaaG4namaaCaaaleqabaGa
% amiEaaaakiabgkHiTiaaigdacaaI5aGaaiykamaaCaaaleqabaGaaG
% inaaaakiabgUcaRiaaigdacaaI2aGaaiykamaaCaaaleqabaGaaGin
% aaaakiabgUcaRiaaigdacaaI2aGaai4oaaaa!50B7!
\[
f((7^x - 19)^4 + 16) = ((7^x - 19)^4 + 16)^4 + 16;
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI
% cacaGGOaGaaG4namaaCaaaleqabaGaamiEaaaakiabgkHiTiaaigda
% caaI5aGaaiykamaaCaaaleqabaGaaGinaaaakiabgUcaRiaaigdaca
% aI2aGaaiykaiabg2da9iaacIcacaGGOaGaaG4namaaCaaaleqabaGa
% amiEaaaakiabgkHiTiaaigdacaaI5aGaaiykamaaCaaaleqabaGaaG
% inaaaakiabgUcaRiaaigdacaaI2aGaaiykamaaCaaaleqabaGaaGin
% aaaakiabgUcaRiaaigdacaaI2aGaai4oaaaa!50B7!
\[
f((7^x - 19)^4 + 16) = ((7^x - 19)^4 + 16)^4 + 16;
\]
$](https://dxdy-02.korotkov.co.uk/f/9/2/2/9224b61d9e20b2b4689e3ca9a0376c9682.png)
2. Функция f не является инъективной, т.к условие
если
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2
% da9iaadAgacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMca
% caaMc8UaaGPaVlaabIdbcaaMc8UaaGPaVlaadMhacqGH9aqpcaWGMb
% GaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiilaiaa
% ykW7caaMc8UaaGPaVlaaykW7caqGcrGaaeOpeiaaykW7caaMc8UaaG
% PaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWG4bWaaSba
% aSqaaiaaikdaaeqaaaaa!5B29!
\[
y = f(x_1 )\,\,{\rm{}}\,\,y = f(x_2 ),\,\,\,\,{\rm{}}\,\,\,x_1 = x_2
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2
% da9iaadAgacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMca
% caaMc8UaaGPaVlaabIdbcaaMc8UaaGPaVlaadMhacqGH9aqpcaWGMb
% GaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiilaiaa
% ykW7caaMc8UaaGPaVlaaykW7caqGcrGaaeOpeiaaykW7caaMc8UaaG
% PaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWG4bWaaSba
% aSqaaiaaikdaaeqaaaaa!5B29!
\[
y = f(x_1 )\,\,{\rm{}}\,\,y = f(x_2 ),\,\,\,\,{\rm{}}\,\,\,x_1 = x_2
\]
$](https://dxdy-03.korotkov.co.uk/f/e/1/6/e16901f3fa5d5b20c52fdaa0991cb1bd82.png)
не выполняется , например f(-1) = f(1)
Функция f не является сюръективной, так как условие
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG
% PaVlaadMhacqGHiiIZcaWGzbGaaGPaVlabgoGiKiaaykW7caWG4bGa
% aGPaVlabgIGiolaadIfacaaMc8UaaGPaVlaadMhacqGH9aqpcaWGMb
% GaaiikaiaadIhacaGGPaaaaa!4CD7!
\[
\forall \,y \in Y\,\exists \,x\, \in X\,\,y = f(x)
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG
% PaVlaadMhacqGHiiIZcaWGzbGaaGPaVlabgoGiKiaaykW7caWG4bGa
% aGPaVlabgIGiolaadIfacaaMc8UaaGPaVlaadMhacqGH9aqpcaWGMb
% GaaiikaiaadIhacaGGPaaaaa!4CD7!
\[
\forall \,y \in Y\,\exists \,x\, \in X\,\,y = f(x)
\]
$](https://dxdy-01.korotkov.co.uk/f/0/b/a/0baa9417d82769fe8b59f1dbd0212d3182.png)
не выполняется , например не существует x, для которых f < 0
Так как функция f не является инъективной и сюръективной, то она не является биективной.
Функция g является инъективной, т.к условие
если
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2
% da9iaadAgacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMca
% caaMc8UaaGPaVlaabIdbcaaMc8UaaGPaVlaadMhacqGH9aqpcaWGMb
% GaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiilaiaa
% ykW7caaMc8UaaGPaVlaaykW7caqGcrGaaeOpeiaaykW7caaMc8UaaG
% PaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWG4bWaaSba
% aSqaaiaaikdaaeqaaaaa!5B29!
\[
y = f(x_1 )\,\,{\rm{}}\,\,y = f(x_2 ),\,\,\,\,{\rm{}}\,\,\,x_1 = x_2
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2
% da9iaadAgacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMca
% caaMc8UaaGPaVlaabIdbcaaMc8UaaGPaVlaadMhacqGH9aqpcaWGMb
% GaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiilaiaa
% ykW7caaMc8UaaGPaVlaaykW7caqGcrGaaeOpeiaaykW7caaMc8UaaG
% PaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWG4bWaaSba
% aSqaaiaaikdaaeqaaaaa!5B29!
\[
y = f(x_1 )\,\,{\rm{}}\,\,y = f(x_2 ),\,\,\,\,{\rm{}}\,\,\,x_1 = x_2
\]
$](https://dxdy-03.korotkov.co.uk/f/e/1/6/e16901f3fa5d5b20c52fdaa0991cb1bd82.png)
выполняется
Функция g является сюръективной, так как условие
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG
% PaVlaadMhacqGHiiIZcaWGzbGaaGPaVlabgoGiKiaaykW7caWG4bGa
% aGPaVlabgIGiolaadIfacaaMc8UaaGPaVlaadMhacqGH9aqpcaWGMb
% GaaiikaiaadIhacaGGPaaaaa!4CD7!
\[
\forall \,y \in Y\,\exists \,x\, \in X\,\,y = f(x)
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG
% PaVlaadMhacqGHiiIZcaWGzbGaaGPaVlabgoGiKiaaykW7caWG4bGa
% aGPaVlabgIGiolaadIfacaaMc8UaaGPaVlaadMhacqGH9aqpcaWGMb
% GaaiikaiaadIhacaGGPaaaaa!4CD7!
\[
\forall \,y \in Y\,\exists \,x\, \in X\,\,y = f(x)
\]
$](https://dxdy-01.korotkov.co.uk/f/0/b/a/0baa9417d82769fe8b59f1dbd0212d3182.png)
выполняется
Так как функция g является инъективной и сюръективной, то она является биективной (т.е. взаимнооднозначной)
Функция h является инъективной, т.к условие
если
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2
% da9iaadAgacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMca
% caaMc8UaaGPaVlaabIdbcaaMc8UaaGPaVlaadMhacqGH9aqpcaWGMb
% GaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiilaiaa
% ykW7caaMc8UaaGPaVlaaykW7caqGcrGaaeOpeiaaykW7caaMc8UaaG
% PaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWG4bWaaSba
% aSqaaiaaikdaaeqaaaaa!5B29!
\[
y = f(x_1 )\,\,{\rm{}}\,\,y = f(x_2 ),\,\,\,\,{\rm{}}\,\,\,x_1 = x_2
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2
% da9iaadAgacaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacMca
% caaMc8UaaGPaVlaabIdbcaaMc8UaaGPaVlaadMhacqGH9aqpcaWGMb
% GaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiilaiaa
% ykW7caaMc8UaaGPaVlaaykW7caqGcrGaaeOpeiaaykW7caaMc8UaaG
% PaVlaadIhadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWG4bWaaSba
% aSqaaiaaikdaaeqaaaaa!5B29!
\[
y = f(x_1 )\,\,{\rm{}}\,\,y = f(x_2 ),\,\,\,\,{\rm{}}\,\,\,x_1 = x_2
\]
$](https://dxdy-03.korotkov.co.uk/f/e/1/6/e16901f3fa5d5b20c52fdaa0991cb1bd82.png)
выполняется
Функция h не является сюръективной, так как условие
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG
% PaVlaadMhacqGHiiIZcaWGzbGaaGPaVlabgoGiKiaaykW7caWG4bGa
% aGPaVlabgIGiolaadIfacaaMc8UaaGPaVlaadMhacqGH9aqpcaWGMb
% GaaiikaiaadIhacaGGPaaaaa!4CD7!
\[
\forall \,y \in Y\,\exists \,x\, \in X\,\,y = f(x)
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG
% PaVlaadMhacqGHiiIZcaWGzbGaaGPaVlabgoGiKiaaykW7caWG4bGa
% aGPaVlabgIGiolaadIfacaaMc8UaaGPaVlaadMhacqGH9aqpcaWGMb
% GaaiikaiaadIhacaGGPaaaaa!4CD7!
\[
\forall \,y \in Y\,\exists \,x\, \in X\,\,y = f(x)
\]
$](https://dxdy-01.korotkov.co.uk/f/0/b/a/0baa9417d82769fe8b59f1dbd0212d3182.png)
не выполняется , например не существует x, для которых h < -19
Так как функция h не является сюръективной, то она не является биективной
3. Найдем обратные функции:
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa
% aaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWG4bGaaiykaiabg2da
% 9maabmaabaGaamiEaiabgkHiTiaaigdacaaI2aaacaGLOaGaayzkaa
% WaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaakiaacUda
% aaa!4380!
\[
f^{ - 1} (x) = \left( {x - 16} \right)^{\frac{1}{4}} ;
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa
% aaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWG4bGaaiykaiabg2da
% 9maabmaabaGaamiEaiabgkHiTiaaigdacaaI2aaacaGLOaGaayzkaa
% WaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaakiaacUda
% aaa!4380!
\[
f^{ - 1} (x) = \left( {x - 16} \right)^{\frac{1}{4}} ;
\]
$](https://dxdy-02.korotkov.co.uk/f/9/4/9/949aa12486afc6f686e603681f44f47e82.png)
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCa
% aaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWG4bGaaiykaiabg2da
% 9maalaaabaWaaeWaaeaacaWG4bGaeyOeI0IaaGOmaaGaayjkaiaawM
% caaaqaaiaaiwdaaaGaai4oaaaa!41D1!
\[
g^{ - 1} (x) = \frac{{\left( {x - 2} \right)}}{5};
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCa
% aaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWG4bGaaiykaiabg2da
% 9maalaaabaWaaeWaaeaacaWG4bGaeyOeI0IaaGOmaaGaayjkaiaawM
% caaaqaaiaaiwdaaaGaai4oaaaa!41D1!
\[
g^{ - 1} (x) = \frac{{\left( {x - 2} \right)}}{5};
\]
$](https://dxdy-03.korotkov.co.uk/f/e/a/6/ea639772e1fa38359484b2674b4a6bee82.png)
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaCa
% aaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWG4bGaaiykaiabg2da
% 9iGacYgacaGGVbGaai4zamaaBaaaleaacaaI3aaabeaakiaacIcaca
% WG4bGaey4kaSIaaGymaiaaiMdacaGGPaaaaa!4492!
\[
h^{ - 1} (x) = \log _7 (x + 19)
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaCa
% aaleqabaGaeyOeI0IaaGymaaaakiaacIcacaWG4bGaaiykaiabg2da
% 9iGacYgacaGGVbGaai4zamaaBaaaleaacaaI3aaabeaakiaacIcaca
% WG4bGaey4kaSIaaGymaiaaiMdacaGGPaaaaa!4492!
\[
h^{ - 1} (x) = \log _7 (x + 19)
\]
$](https://dxdy-01.korotkov.co.uk/f/c/8/b/c8bc79d0c36d612126b5011185ec6dd882.png)
Для 1-ой функции сужение x>=16
Для 3-ей функции сужение x > -19
Задача 4.
Является ли антисимметричным бинарное отношение
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa
% aaleqabaGaeyOeI0IaaGymaaaaaaa!3899!
\[
R^{ - 1}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa
% aaleqabaGaeyOeI0IaaGymaaaaaaa!3899!
\[
R^{ - 1}
\]
$](https://dxdy-01.korotkov.co.uk/f/4/1/3/41303f72a6788ddf3a3c472638ac506282.png)
если отношение R антисимметрично? В случае отрицательного ответа необходимо привести конкретный пример.
Решение:
Обратное отношение:
Отношение называется обратным к отношению Г(обозначение
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaW
% baaSqabeaacqGHsislcaaIXaaaaOGaaiilaiabfo5ahnaaCaaaleqa
% baGaeyOeI0IaaGymaaaakiabgAOinlaadIfadaahaaWcbeqaaiaaik
% daaaGccaWG-qGaamiqeiaadIdbcqqHtoWrcqGHgksZcaWGybWaaWba
% aSqabeaacaaIYaaaaaaa!487D!
\[
\Gamma ^{ - 1} ,\Gamma ^{ - 1} \subseteq X^2 \Gamma \subseteq X^2
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaW
% baaSqabeaacqGHsislcaaIXaaaaOGaaiilaiabfo5ahnaaCaaaleqa
% baGaeyOeI0IaaGymaaaakiabgAOinlaadIfadaahaaWcbeqaaiaaik
% daaaGccaWG-qGaamiqeiaadIdbcqqHtoWrcqGHgksZcaWGybWaaWba
% aSqabeaacaaIYaaaaaaa!487D!
\[
\Gamma ^{ - 1} ,\Gamma ^{ - 1} \subseteq X^2 \Gamma \subseteq X^2
\]
$](https://dxdy-01.korotkov.co.uk/f/8/4/7/8473b023e934edd3876c33582187f24d82.png)
), если
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa
% aaleaacaWGQbaabeaakiabfo5ahnaaCaaaleqabaGaeyOeI0IaaGym
% aaaakiaadIhadaWgaaWcbaGaamyAaaqabaaaaa!3D6D!
\[
x_j \Gamma ^{ - 1} x_i
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa
% aaleaacaWGQbaabeaakiabfo5ahnaaCaaaleqabaGaeyOeI0IaaGym
% aaaakiaadIhadaWgaaWcbaGaamyAaaqabaaaaa!3D6D!
\[
x_j \Gamma ^{ - 1} x_i
\]
$](https://dxdy-02.korotkov.co.uk/f/5/1/3/513d7c1da3c0cfb9531d203e96ac7ec282.png)
тогда и только тогда, когда
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa
% aaleaacaWGPbaabeaakiabfo5ahjaadIhadaWgaaWcbaGaamOAaaqa
% baaaaa!3B8E!
\[
x_i \Gamma x_j
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa
% aaleaacaWGPbaabeaakiabfo5ahjaadIhadaWgaaWcbaGaamOAaaqa
% baaaaa!3B8E!
\[
x_i \Gamma x_j
\]
$](https://dxdy-01.korotkov.co.uk/f/4/f/d/4fdc089875612792b396704104bbf2b482.png)
для всех
Антисимметричность: хГу и уГх
Значит х=у;
Меняя местами x и y по определению обратного отношения для
антисимметричности получим:
yГx и xГy
Значит y=x;
т.е. свойство антисимметричности сохранилось.
Примером могут быть отношения
<= (антисимметрично) и обратное >= (тоже антисимметрично)