2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Объем куба, вписанного в конус
Сообщение08.12.2009, 22:16 
Аватара пользователя
Мне нужно вычислить объем куба, вписанного в прямой круговой конус (R,H).

Честно говоря даже не знаю с чего начинать, то есть это больше стереометрия или лучше использовать интегрирование?

 
 
 
 Re: Объем куба, вписанного в конус
Сообщение08.12.2009, 22:22 
Начните с сечения конуса, проходящего через диагональ верхней грани куба. В том сечении получится прямоугольник, вписанный в равнобедренный треугольник, причём соотношения сторон и в треугольнике, и в прямоугольнике Вам известны.

 
 
 
 Re: Объем куба, вписанного в конус
Сообщение08.12.2009, 22:24 
Аватара пользователя
Начните с ерунды: Вы понимаете, как этот куб расположен в конусе? Я - нет.

 
 
 
 Re: Объем куба, вписанного в конус
Сообщение08.12.2009, 22:30 
горизонтально. Это подразумевается.

 
 
 
 Re: Объем куба, вписанного в конус
Сообщение08.12.2009, 22:33 
Аватара пользователя
Э. Ну да, скорее всего так. Но мало ли...

 
 
 
 Re: Объем куба, вписанного в конус
Сообщение08.12.2009, 22:37 
Аватара пользователя
нет, нет - горизонтально конечно...

Я построил сечение, треугольник со сторонами $l$ и $2r$ прямоугольник со сторонами $a$ (грань куба) и $a\sqrt2$. Высота треугольника $H$ - это высота конуса. Правильно я понимаю, что надо выразить $a$ через параметры конуса? или не то ...

-- Вт дек 08, 2009 19:57:57 --

Если использовать вот этот рисунок:
Изображение

то могу ли я из подобия треугольников CDB, CEK написать
$\frac{a}{H}=\frac{r-\frac{a\sqrt2}{2}}{r}$ ? а отсюда потом найти $a$

 
 
 
 Re: Объем куба, вписанного в конус
Сообщение09.12.2009, 10:23 
Аватара пользователя
Рисунок неправильный. Ширина сечения куба должна быть больше высоты, так как при $a>0 \quad \sqrt2a>a$ :)

А Ваша формула правильная. Не забудьте $a$ возвести в куб.

 
 
 
 Re: Объем куба, вписанного в конус
Сообщение09.12.2009, 10:31 
Аватара пользователя
gris в сообщении #269329 писал(а):
Рисунок неправильный. Ширина сечения куба должна быть больше высоты, так как при $a>0 \quad \sqrt2a>a$ :)


да, да - я это тоже понял, просто рисунок сделал для наглядности, не соблюдая пропорции- не очень корректно.

спасибо большое!

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group