Здравствуйте!
Проверьте, пожалуйста, решение одной задачи.
Дан граф.

Необходимо найти все минимальные внешне устойчивые множества вершин, наименьшие доминирующие множества и число внешней устойчивости
Логическое выражение для минимальных внешне устойчивых множеств вершин имеет вид
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaH1o
% qzdaWgaaWcbaGaaGymaaqabaGccqGHIaYTdaqadaqaaiabew7aLnaa
% BaaaleaacaaIZaaabeaakiaadAfacqaH1oqzdaWgaaWcbaGaaGinaa
% qabaGccaWGwbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGa
% ayzkaaGaeyOiGCRaeqyTdu2aaSbaaSqaaiaaiodaaeqaaOGaeyOiGC
% 7aaeWaaeaacqaH1oqzdaWgaaWcbaGaaGinaaqabaGccaWGwbGaeqyT
% du2aaSbaaSqaaiaaigdaaeqaaOGaamOvaiabew7aLnaaBaaaleaaca
% aIYaaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaGaeqyTdu2a
% aSbaaSqaaiaaisdaaeqaaOGaamOvaiabew7aLnaaBaaaleaacaaIYa
% aabeaaaOGaayjkaiaawMcaaiabgkci3oaabmaabaGaeqyTdu2aaSba
% aSqaaiaaiodaaeqaaOGaamOvaiabew7aLnaaBaaaleaacaaIXaaabe
% aaaOGaayjkaiaawMcaaiabgkci3oaabmaabaGaeqyTdu2aaSbaaSqa
% aiaaiodaaeqaaOGaeyOiGCRaeqyTdu2aaSbaaSqaaiaaigdaaeqaaa
% GccaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacqaH1oqzdaWgaaWcbaGa
% aGinaaqabaGccaWGwbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaGcca
% GLOaGaayzkaaGaeyOiGC7aaeWaaeaacqaH1oqzdaWgaaWcbaGaaG4m
% aaqabaGccqGHIaYTcqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaWGwb
% GaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaeyOiGCRaeqyTdu2aaSba
% aSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaeyypa0dabaGaeyypa0
% ZaaeWaaeaacqaH1oqzdaWgaaWcbaGaaGinaaqabaGccaWGwbGaeqyT
% du2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyOiGC7aae
% WaaeaacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccqGHIaYTcqaH1oqz
% daWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaacqGH9aqpcqaH1o
% qzdaWgaaWcbaGaaGymaaqabaGccqGHIaYTcqaH1oqzdaWgaaWcbaGa
% aG4maaqabaGccqGHIaYTcqaH1oqzdaWgaaWcbaGaaGinaaqabaGcca
% WGwbGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaeyOiGCRaeqyTdu2a
% aSbaaSqaaiaaikdaaeqaaOGaeyOiGCRaeqyTdu2aaSbaaSqaaiaaio
% daaeqaaOGaai4oaaaaaa!B6F5!
\[
\begin{array}{l}
\varepsilon _1 \bullet \left( {\varepsilon _3 V\varepsilon _4 V\varepsilon _2 } \right) \bullet \varepsilon _3 \bullet \left( {\varepsilon _4 V\varepsilon _1 V\varepsilon _2 } \right) = \left( {\varepsilon _4 V\varepsilon _2 } \right) \bullet \left( {\varepsilon _3 V\varepsilon _1 } \right) \bullet \left( {\varepsilon _3 \bullet \varepsilon _1 } \right) = \left( {\varepsilon _4 V\varepsilon _2 } \right) \bullet \left( {\varepsilon _3 \bullet \varepsilon _1 V\varepsilon _1 \bullet \varepsilon _3 } \right) = \\
= \left( {\varepsilon _4 V\varepsilon _2 } \right) \bullet \left( {\varepsilon _1 \bullet \varepsilon _3 } \right) = \varepsilon _1 \bullet \varepsilon _3 \bullet \varepsilon _4 V\varepsilon _1 \bullet \varepsilon _2 \bullet \varepsilon _3 ; \\
\end{array}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaH1o
% qzdaWgaaWcbaGaaGymaaqabaGccqGHIaYTdaqadaqaaiabew7aLnaa
% BaaaleaacaaIZaaabeaakiaadAfacqaH1oqzdaWgaaWcbaGaaGinaa
% qabaGccaWGwbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGa
% ayzkaaGaeyOiGCRaeqyTdu2aaSbaaSqaaiaaiodaaeqaaOGaeyOiGC
% 7aaeWaaeaacqaH1oqzdaWgaaWcbaGaaGinaaqabaGccaWGwbGaeqyT
% du2aaSbaaSqaaiaaigdaaeqaaOGaamOvaiabew7aLnaaBaaaleaaca
% aIYaaabeaaaOGaayjkaiaawMcaaiabg2da9maabmaabaGaeqyTdu2a
% aSbaaSqaaiaaisdaaeqaaOGaamOvaiabew7aLnaaBaaaleaacaaIYa
% aabeaaaOGaayjkaiaawMcaaiabgkci3oaabmaabaGaeqyTdu2aaSba
% aSqaaiaaiodaaeqaaOGaamOvaiabew7aLnaaBaaaleaacaaIXaaabe
% aaaOGaayjkaiaawMcaaiabgkci3oaabmaabaGaeqyTdu2aaSbaaSqa
% aiaaiodaaeqaaOGaeyOiGCRaeqyTdu2aaSbaaSqaaiaaigdaaeqaaa
% GccaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacqaH1oqzdaWgaaWcbaGa
% aGinaaqabaGccaWGwbGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaGcca
% GLOaGaayzkaaGaeyOiGC7aaeWaaeaacqaH1oqzdaWgaaWcbaGaaG4m
% aaqabaGccqGHIaYTcqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaWGwb
% GaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaeyOiGCRaeqyTdu2aaSba
% aSqaaiaaiodaaeqaaaGccaGLOaGaayzkaaGaeyypa0dabaGaeyypa0
% ZaaeWaaeaacqaH1oqzdaWgaaWcbaGaaGinaaqabaGccaWGwbGaeqyT
% du2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyOiGC7aae
% WaaeaacqaH1oqzdaWgaaWcbaGaaGymaaqabaGccqGHIaYTcqaH1oqz
% daWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaacqGH9aqpcqaH1o
% qzdaWgaaWcbaGaaGymaaqabaGccqGHIaYTcqaH1oqzdaWgaaWcbaGa
% aG4maaqabaGccqGHIaYTcqaH1oqzdaWgaaWcbaGaaGinaaqabaGcca
% WGwbGaeqyTdu2aaSbaaSqaaiaaigdaaeqaaOGaeyOiGCRaeqyTdu2a
% aSbaaSqaaiaaikdaaeqaaOGaeyOiGCRaeqyTdu2aaSbaaSqaaiaaio
% daaeqaaOGaai4oaaaaaa!B6F5!
\[
\begin{array}{l}
\varepsilon _1 \bullet \left( {\varepsilon _3 V\varepsilon _4 V\varepsilon _2 } \right) \bullet \varepsilon _3 \bullet \left( {\varepsilon _4 V\varepsilon _1 V\varepsilon _2 } \right) = \left( {\varepsilon _4 V\varepsilon _2 } \right) \bullet \left( {\varepsilon _3 V\varepsilon _1 } \right) \bullet \left( {\varepsilon _3 \bullet \varepsilon _1 } \right) = \left( {\varepsilon _4 V\varepsilon _2 } \right) \bullet \left( {\varepsilon _3 \bullet \varepsilon _1 V\varepsilon _1 \bullet \varepsilon _3 } \right) = \\
= \left( {\varepsilon _4 V\varepsilon _2 } \right) \bullet \left( {\varepsilon _1 \bullet \varepsilon _3 } \right) = \varepsilon _1 \bullet \varepsilon _3 \bullet \varepsilon _4 V\varepsilon _1 \bullet \varepsilon _2 \bullet \varepsilon _3 ; \\
\end{array}
\]
$](https://dxdy-04.korotkov.co.uk/f/3/1/4/314fd099b2549b4d785dbccc01f775b582.png)
Значит, минимальные внешне устойчивые множества вершин - это
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca
% WG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadAhadaWgaaWcbaGa
% aG4maaqabaGccaGGSaGaamODamaaBaaaleaacaaI0aaabeaaaOGaay
% 5Eaiaaw2haaaaa!3F47!
\[
\left\{ {v_1 ,v_3 ,v_4 } \right\}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca
% WG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadAhadaWgaaWcbaGa
% aG4maaqabaGccaGGSaGaamODamaaBaaaleaacaaI0aaabeaaaOGaay
% 5Eaiaaw2haaaaa!3F47!
\[
\left\{ {v_1 ,v_3 ,v_4 } \right\}
\]
$](https://dxdy-03.korotkov.co.uk/f/6/7/e/67ef53191da3fe61ebd545ea137909b982.png)
и
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca
% WG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadAhadaWgaaWcbaGa
% aGOmaaqabaGccaGGSaGaamODamaaBaaaleaacaaIZaaabeaaaOGaay
% 5Eaiaaw2haaaaa!3F45!
\[
\left\{ {v_1 ,v_2 ,v_3 } \right\}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca
% WG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadAhadaWgaaWcbaGa
% aGOmaaqabaGccaGGSaGaamODamaaBaaaleaacaaIZaaabeaaaOGaay
% 5Eaiaaw2haaaaa!3F45!
\[
\left\{ {v_1 ,v_2 ,v_3 } \right\}
\]
$](https://dxdy-01.korotkov.co.uk/f/c/f/b/cfb57d13f36b2545045ab1655d03be6b82.png)
Далее, я так понимаю, наименьшее доминирующее множество - (в данном случае оо будет только одно?) - это
![$% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca
% WG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadAhadaWgaaWcbaGa
% aG4maaqabaaakiaawUhacaGL9baaaaa!3CA8!
\[
\left\{ {v_1 ,v_3 } \right\}
\]
$ $% MathType!MTEF!2!1!+-
% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca
% WG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadAhadaWgaaWcbaGa
% aG4maaqabaaakiaawUhacaGL9baaaaa!3CA8!
\[
\left\{ {v_1 ,v_3 } \right\}
\]
$](https://dxdy-03.korotkov.co.uk/f/e/0/0/e00ee052165815482a437017abcc593a82.png)
И, соответственно, число внешней устойчивости равно 2.
Правильно ли это?