формула дизъюнктивного разложения:

формула конъюнктивного разложения:

СДНФ (Совершенная Дизъюнктивная Нормальная Форма) — это такая ДНФ, которая удовлетворяет трём условиям:
- в ней нет одинаковых элементарных конъюнкций
- в каждой конъюнкции нет одинаковых пропозициональных букв
- каждая элементарная конъюнкция содержит каждую пропозициональную букву из входящих в данную ДНФ пропозициональных букв, причем в одинаковом порядке.
СКНФ (Совершенная Конъюнктивная Нормальная Форма) — это такая КНФ, которая удовлетворяет трём условиям:
- в ней нет одинаковых элементарных дизъюнкций
- в каждой дизъюнкции нет одинаковых пропозициональных букв
- каждая элементарная дизъюнкция содержит каждую пропозициональную букву из входящих в данную КНФ пропозициональных букв.
СДНФ, СКНФ находятся через таблицу истинности, но у меня на всех наборах вышли единицы. Как быть?