Мы имеем таблицу умножения базисных элементов 4-мерных ассоц. алгебр.
пример:

.
Видно что алгебра не является нильпотентной. Левый и правый аннулятор нуль мерные. Коммутативная алгебра с единицей.
Вопрос:
1. Как найти идеал этой алгебры?
2. Я думаю это алгебра полупростая (если идеала не существуют можеть и простая), верно ли?
3. Вообще из не нильпотентности следует ли полупростата. т.е. Если алгебра не яв-ся нильпотентной то она полупроста?
( речь идет о ассоциативных алгебрах)
спасибо всем участникам форума!