А с множителями Лагранжа придется добавить переменные

,

в неравенства и превратить их в равенства - и составить функцию Лагранжа добавив полученные равенства в целевую функцию с двумя множителями Лагранжа - здесь на форуме поищите.
Обычно в описаниях метода эти доп. переменные обозначают

.
Думаю, из линейности целевой функции следует возможность работать только на границах области "превратить неравенства в равенства". Ну и задачка требует аккуратности рассуждений, как мне кажется напоследок.
-- Пн июн 08, 2009 17:14:43 --А как быть с неограниченностью рабочей области?
Извините, я её не заметил. Подумал наоборот. Но на первый взгляд, это ничего не меняет.
Ну и вообще, по теме я как бы ничего не советовал.
