А он точно сходится? В знаменателе ведь стоит логарифм, а он растет как

А по признаку сходимости (степень n в знаменателе меньше 1) абсолюный ряд не сходится. Возможно я ошибаюсь, поправьте меня, если что...=)
Ну вообще-то логарифм не растет как

- он растет медленнее любой степенной функции.
Ряд здесь знакопеременный, с монотонно убывающими модулями - сходящийся.
-- 00:31 06.06.2009 --Собственно, по поводу ряда. Я попробовал его посчитать численно - получается число, близкое к константе Каталана

. Впрочем, может быть просто совпадение - ваш ряд сходится очень медленно сходится, посчитать его дальше двух-трех знаков не получается.