2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 статистика и критерий Уилкоксона
Сообщение13.03.2009, 17:41 
1)Какое условие необходимо для применения критерия знаковых ранговых сумм Уилкоксона?

случайные величины дискретны(правильно?)

 
 
 
 
Сообщение13.03.2009, 18:14 
Аватара пользователя
Нет. Я точно не помню, но кажется главное условие - это симметричность распределения относительно своего математического ожидания.

 
 
 
 
Сообщение16.03.2009, 20:32 
Рассмотрим две независимые выборки по 6 элементов в каждой. Каково математическое ожидание статистики Уилкоксона при выполнении гипотезы об однородности выборок?

Добавлено спустя 34 минуты 33 секунды:

справидливо утверждение; при отсутствии эффекта обработки для повторных парных наблюдений (х1,у1),...(хn,yn) случайных величин X и Y независимо от их распредиления

P(xi>yi)=0.5 для всех i=1,...,n.

 
 
 
 статистическая гипотеза (срочно)
Сообщение17.03.2009, 10:01 
1.Рассмотрим две независимые выборки по 6 элементов в каждой. Каково математическое ожидание статистики Уилкоксона при выполнении гипотезы об однородности выборок?

2.справидливо утверждение; при отсутствии эффекта обработки для повторных парных наблюдений (х1,у1),...(хn,yn) случайных величин X и Y независимо от их распредиления

P(xi>yi)=0.5 для всех i=1,...,n.

3.Какое условие необходимо для применения критерия знаковых ранговых сумм Уилкоксона?

непрерывно и одинаково распределены(правильно?)

//Темы соединил GAA

 
 
 
 
Сообщение17.03.2009, 10:24 
Аватара пользователя
Вы бы все варианты ответов привели.

 
 
 
 
Сообщение17.03.2009, 10:34 
1. Рассмотрим две независимые выборки по 6 элементов в каждой. Каково математическое ожидание статистики Уилкоксона при выполнении гипотезы об однородности выборок?
1) 39.
2) 38.
3) 37.
4) 35.
5) 43.

2.при отсутствии эффекта обработки для повторных парных наблюдений (х1,у1),...(хn,yn) случайных величин X и Y независимо от их распредиления

P(xi>yi)=0.5 для всех i=1,...,n.
P(xi<yi)>0.5 для всех i=1,...,n.
P(xi>yi)>0.5 для всех i=1,...,n.
P(xi=yi)>0.5 для всех i=1,...,n.
P(xn=yn)>0.5

 
 
 
 
Сообщение17.03.2009, 20:27 
Аватара пользователя
Математическое ожидание статистики Вилкоксона для однородных выборок есть $$\mathsf E W = \frac{m\cdot(n+m+1)}{2}.$$
Второй вопрос совершенно непонятен. Что такое "эффект обработки"?

 
 
 
 
Сообщение17.03.2009, 21:28 
Холлендер М, Вульф Д.А. Непараметрические методы статистики, гл. 2 (Одновыборочная задача о положении)
Цитата:
Допущения
A1. Обозначим $Z_i = Y_i - X_i$ и примем модель
$Z_i = \theta + e_i$, $i= 1..n$,
где $e_i$ — ненаблюдаемые случайные величины; $\theta$ — неизвестный параметр эффекта «обработки», интересующий нас.
A2. Все $e_i$ взаимно независимы, $i=1,..,n$.
A3. Все $e_i$ принадлежат непрерывной совокупности (не обязательно одной и той же), которая симметрична относительно нуля.

 
 
 
 
Сообщение18.03.2009, 17:07 
Аватара пользователя
Спасибо! Тогда автору вопроса осталось понять, какой из вариантов ответа в вопросе 2 вытекает из допущения А3.

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group