2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Многочлен двух переменных, гессиан, однозначность отображени
Сообщение04.03.2009, 15:39 
Пусть $f:\mathbb R^2\to\mathbb R$-многочлен двух вещественных переменных. Предположим,что $\det H\left( f \right) \ne 0$ в любой точке, однозначным ли является отображение $f \to gradf$?
где $H(f)$-матрица Hessian.

 
 
 
 
Сообщение04.03.2009, 15:56 
Рассмотрите другую функцию, например $f+1$.

 
 
 
 Re: Очень трудно!!! Помогите мне??
Сообщение04.03.2009, 16:09 
Аватара пользователя
kekocaumay писал(а):
однозначным ли является отображение $f \to gradf$?

Что такое $gradf$ и что такое однозначное отображение?

 
 
 
 
Сообщение04.03.2009, 21:14 
на самом деле ситуация-то понятна.

На самом деле требуется выяснить, будет ли отображение $\vec x\mapsto\nabla f(\vec x)$ взаимно однозначным.

Локально -- естественно, будет (раз уж матрица Гессе не вырождена). Вопрос -- будет ли глобально.

Ну тут я не знаю. Вообще говоря -- нет, конечно, но коль скоро разговор о многочленах -- то, скорее всего, да. Так мне кажется.

 
 
 
 
Сообщение05.03.2009, 17:05 
предположим, гессиан невырожден в каждой точке.
Ну например - его элементы константы, тогда $f$ - многочлен второй степени, его градиент - линейное отображение. Его матрица невырождена - следовательно, оно глобально взаимо-однозначно.
Если же компоненты градиента нелинейны ($f$ многочлен не менее 3ей степени), то очевидно однозначность может нарушиться, пример:
$f=x^3+y^3$. Тогда $\nabla{f} = 3(x^2,y^2)$. Естественно, обратное отображение неоднозначно.
Собственно, гессиан в данном случае - якобиан отображения. Можно вопсользоваться теореомой о существовании обратного отображения.
Явный путь думаю не приведет к результатам (если расписать $f$ через коэффициенты), потому как гессиан будет многочленом степени $n-2$, где $n$ - степень $f$. Ну а утверждать о том, что у него есть корни будет проблематично, если $n$ - четное.

 
 
 
 
Сообщение05.03.2009, 17:13 
Gortaur писал(а):
Если же компоненты градиента нелинейны ($f$ многочлен не менее 3ей степени), то очевидно однозначность может нарушиться, пример:
$f=x^3+y^3$.

Не пройдёт -- гессиан в нуле будет равен нулю. Вообще, по условию задачи исходный многочлен должен иметь невырожденную чисто квадратичную составляющую.

Gortaur писал(а):
гессиан будет многочленом степени $n-2$, где $n$ - степень $f$.

Вдвое большей степени: гессиан -- это определитель матрицы Гессе.

 
 
 
 
Сообщение05.03.2009, 17:18 
о, прошу прощения. (про степень)

Насчет суммы кубов - это как раз был пример нарушения однозначности, и естественно существования нулей гессиана. Это не контрпример.

 
 
 
 
Сообщение05.03.2009, 17:26 
У Вас тут какая-то путаница.

Локальная невырожденность -- это попросту условие задачи, если говорить по существу. Содержателен вопрос о том, гарантирована ли при этом условии глобальная невырожденность именно для многочленов.

 
 
 
 
Сообщение05.03.2009, 17:28 
Можете привести пример, когда якобиан будет ненулевым всюду на плоскости, но при этом отображение будет неоднозначным?

 
 
 
 
Сообщение05.03.2009, 17:43 
Gortaur в сообщении #192042 писал(а):
Можете привести пример, когда якобиан будет ненулевым всюду на плоскости, но при этом отображение будет неоднозначным?

Пожалуйста -- берём целую функцию на комплексной плоскости. Её вещественная и мнимая части удовлетворяют условиям Коши-Римана и, следовательно, после соответствующих переобозначений являются компонентами некоторого потенциального поля. Причём глобально потенциального, т.к. функция -- именно целая.

Локальная невырожденность в этом случае в точности означает, что производная этой функции по комплексной переменной нигде не обращается в ноль. Но глобальная -- вовсе отсюда не следует.

Конкретно: функция $e^z$ на $\mathbb C$ нулей не имеет, как и её производная, и тем не менее -- взаимно-однозначной на всей $\mathbb C$ не является.

 
 
 
 
Сообщение06.03.2009, 09:31 
Ваш пример: функция действует не на прямую, а в комлексную плоскость. У $(\Re(e^{z}),\Im(e^{z}))$ потенциала нет.

 
 
 
 
Сообщение06.03.2009, 09:51 
Поменяйте знак у одной из компонент.

 
 
 [ Сообщений: 12 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group